
Perl 5 Tutorial

First Edition
(ReleaseCandidate 1)

Chan Bernard Ki Hong

Perl is copyright by Larry Wall.
Linux is a trademark of Linus Torvalds.
Unix is a trademark of AT&T Bell Laboratories.

Perl 5 Tutorial
First Edition
Author: Chan Bernard Ki Hong (webmaster@cbkihong .co m)
Web site: http://www .cbkihong.com
Date of Printing: August 29,2003
Prepared from LATEX source�les by the author.

Important: Pleasenote that this is a preview edition of the document and is released for
collection of feedback purposes only . Therefore, drastic modi�cations may be made to this
document at any time until it is completed and �nalized.

DISCLAIMER

This document is released“as is” without guarantee for accuracyor suitability of any kind, so
use it at your own risk. However , if you notice any errors, or have any suggestions on how I
can further impr ove this tutorial, pleasefeel free to forwar d me your comments through the
email feedback form or feedback forum. Your comments are very much appreciated.

http://www.cbkihong.com
http://www.cbkihong.com/index.pl?page=feedback&lang=e#email
http://forum.cbkihong.com

Contents

1 Introduction to Programming 1
1.1 What is Perl? . 1
1.2 A Trivial Intr oduction to Computer Programming 1
1.3 Scripts vs. Programs . 4
1.4 An Overview of the Software Development Process 4

2 Getting Started 7
2.1 What can Perl do? . 7
2.2 Comparison with Other Programming Languages 8

2.2.1 C/C++ . 8
2.2.2 PHP . 8
2.2.3 Java/JSP . 9
2.2.4 ASP . 9

2.3 What do I need to learn Perl? . 10
2.4 Make Good Use of Online Resources . 11
2.5 The Traditional “Hello World” Program . 12
2.6 How A Perl Program Is Executed . 15
2.7 Literals . 16

2.7.1 Numbers . 17
2.7.2 Strings . 17

2.8 Intr oduction to Data Structures . 19

3 Manipulation of Data Structures 23
3.1 ScalarVariables . 23

3.1.1 Assignment . 23
3.1.2 Nomenclatur e . 24
3.1.3 Variable Substitution . 25
3.1.4 substr() — Extraction of Substrings . 26
3.1.5 length() — Length of String . 26

3.2 Lists and Arrays . 27
3.2.1 Creating an Array . 27
3.2.2 Adding Elements . 28
3.2.3 Getting the number of Elements in an Array 29
3.2.4 AccessingElements in an Array . 30
3.2.5 Removing Elements . 32
3.2.6 splice() : the Versatile Function . 32
3.2.7 Miscellaneous List-Related Functions . 33
3.2.8 Check for Existenceof Elements in an Array (Avoid!) 35

3.3 Hashes . 39
3.3.1 Assignment . 39

i

ii CONTENTS

3.3.2 Accessingelements in the Hash . 40
3.3.3 Removing Elements from a Hash . 41
3.3.4 Searching for an Element in a Hash . 42

3.4 Contexts . 43
3.5 Miscellaneous Issueswith Lists . 44

4 Operators 47
4.1 Intr oduction . 47
4.2 Description of someOperators . 48

4.2.1 Arithmetic Operators . 48
4.2.2 String Manipulation Operators . 50
4.2.3 Comparison Operators . 51
4.2.4 Equality Operators . 54
4.2.5 Logical Operators . 55
4.2.6 Bitwise Operators . 57
4.2.7 Assignment Operators . 58
4.2.8 Other Operators . 59

4.3 Operator Precedenceand Associativity . 60
4.4 Constructing Your Own sort() Routine . 65

5 Conditionals, Loops & Subroutines 67
5.1 Breaking Up Your Code . 67

5.1.1 Sourcing External Files with require() 67
5.2 Scopeand Code Blocks . 69

5.2.1 Intr oduction to Associations . 69
5.2.2 Code Blocks . 69

5.3 Subroutines . 70
5.3.1 Creating and Using A Subroutine . 71
5.3.2 Prototypes . 74
5.3.3 Recursion . 76

5.4 Packages . 78
5.4.1 Declaring a Package . 78
5.4.2 PackageVariable Referencing . 79
5.4.3 PackageVariables and Symbol Tables . 80

5.5 Lexical Binding and Dynamic Binding . 80
5.6 Conditionals . 84
5.7 Loops . 86

5.7.1 for loop . 86
5.7.2 while loop . 88
5.7.3 foreach loop . 88
5.7.4 Loop Control Statements . 89

6 References 91
6.1 Intr oduction . 91
6.2 ReferencesPrimer . 91

6.2.1 Creating a Reference . 91
6.2.2 Using References . 94
6.2.3 PassBy Reference . 96

6.3 How Everything Fits Together . 97
6.4 Typeglobs . 98

CONTENTS iii

7 Object-Oriented Programming 101
7.1 Intr oduction . 101
7.2 Object-Oriented Concepts . 102

7.2.1 Programming Paradigms . 102
7.2.2 BasicIdeas . 102
7.2.3 Fundamental Elements of Object-Oriented Programming 103

7.3 OOP Primer: Statistics . 103
7.3.1 Creating and Using A Perl Class . 107
7.3.2 How A ClassIs Instantiated . 108

7.4 Inheritance . 109
7.5 Another Example: Traf�c Light Simulation . 114

8 Files and Filehandles 119
8.1 Intr oduction . 119
8.2 Filehandles . 120

8.2.1 open a File . 120
8.2.2 Output Redirection . 122

8.3 File Input and Output Functions . 122
8.3.1 readline() — ReadsA Line from Filehandle 122
8.3.2 binmode() — Binary Mode Declaration 123
8.3.3 read() — ReadsA Speci�ed Number of Charactersfrom Filehandle . . 123
8.3.4 print()/printf() — Output To A FileHandle 124
8.3.5 seek() — SetsFile Pointer Position . 125
8.3.6 tell() — Returns File Pointer Position 125
8.3.7 close() — Close An open ed File . 126

8.4 Dir ectory Traversal Functions . 126
8.4.1 opendir() — Opens A Dir ectory . 126
8.4.2 readdir() — ReadsDir ectory Index . 127
8.4.3 Example: File Search . 127

8.5 File TestOperators . 129
8.6 File Locking . 130

9 Regular Expressions 135
9.1 Intr oduction . 135
9.2 Building a Pattern . 136

9.2.1 Getting your Foot Wet . 136
9.2.2 Intr oduction to m// and the Binding Operator 137
9.2.3 Metacharacters . 138
9.2.4 Quanti�ers . 139
9.2.5 Character Classes . 139
9.2.6 Backtracking . 140

9.3 Regular ExpressionOperators . 141
9.3.1 m// — Pattern Matching . 141
9.3.2 s/// — Search and Replace . 142
9.3.3 tr/// — Global Character Transliteration 142

9.4 Putting It All Together . 143

iv CONTENTS

10 CGI Programming 145
10.1 Intr oduction . 145
10.2 Static Content and Dynamic Content . 145

10.2.1 The Hypertext Markup Language . 145
10.2.2 The World Wide Web . 146

10.3 What is CGI? . 148
10.4 Your First CGI Program . 150
10.5 GET vs. POST . 154
10.6 File Upload . 156
10.7 Important Envir onment Variables . 158

10.7.1 CGI Envir onment Variables . 158
10.8 ServerSide Includes . 159
10.9 Security Issues . 160

10.9.1 Why Should I Care? . 161
10.9.2 SomeForms of Attack Explained . 161
10.9.3 SafeCGI Scripting Guidelines . 164

10.10Questions . 164

A Administration 165
A.1 CPAN . 165

A.1.1 Accessingthe Module Databaseon the Web 165
A.1.2 PackageManagers . 165
A.1.3 Installing Modules using CPAN.pm . 166
A.1.4 Installing Modules — The Traditional Way 168

B Setting Up A Web Server 169
B.1 Apache . 169

B.1.1 Micr osoft Windows . 169
B.1.2 Unix . 174

C A Unix Primer 177
C.1 Intr oduction . 177

C.1.1 Why Should I Care About Unix? . 177
C.1.2 What Is Unix? . 177
C.1.3 The Overall Structure . 178

C.2 Filesystemsand Processes . 179
C.2.1 Overview . 179
C.2.2 Symbolic Links and Hard Links . 180
C.2.3 Permission and Ownership . 184
C.2.4 Processes. 186
C.2.5 The SpecialPermission Bits . 187

D BNF Grammar of Selected Functions 189
D.1 sprintf() / printf() . 189

E In The Next Edition 191

Preface

If you are looking for a free Perl tutorial that is packed with everything you need to know
to get started on Perl programming, look no further . Presenting before you is probably the
most comprehensive Perl tutorial on the Web, the product of two years of diligence seeking
referencefrom related books and web sites.

Perl is a programming language that is offered at no cost. So wouldn't it be nice if you can
also learn it at no cost? Packed with some background knowledge of programming in C++
and Visual Basic,when I started learning Perl several yearsago, I couldn't even �nd one good
online tutorial that covered at least the basicsof the Perl language and was free. Most Perl
tutorials I could �nd merely covered the very basic topics such asscalar/list assignment, op-
erators and some�ow control structuresetc. On the other hand, although I have accumulated
certain levels of experience in a number of programming languages, the of�cial Perl manual
pages are quite technical with whole pages of jargons that I was not very familiar with. As
a result, the book “Learning Perl” written by Larry Wall, the inventor of the Perl language,
naturally becamethe only Perl textbook available. The O'Reilly Perl Seriespresent the most
authoritative and well-written resourceson the subjectwritten by the core developers of Perl.
While you are strongly recommended to grab one copy of each if you have the money, they
are not so cheap, though, and that's the motive behind my writing of this tutorial — so that
more people with no programming background can start learning this stupendous and pow-
erful language in a more cost-effective way.

Although this tutorial covers a rather wide range of topics, similar to that you can �nd from
someother Perl guidebooks, you are strongly encouraged to read those books too, since their
paedagogiesof teaching may suit you more.

Here are several featuresof this tutorial:

? As this is not a printed book, I will constantly add new materials to this tutorial as
needed, thus enriching the content of this tutorial. Mor eover, in order to help me im-
prove the quality of this tutorial, it is crucial that you forwar d me your comments and
suggestionsso that I can further make impr ovements to it.

? In response to requests made from several visitors, this tutorial, in PDF format, has
been made available for download. I hope this will help those who are charged on
time basis for connecting to the Internet. This tutorial is typeset in LATEX, a renowned
document typesetting system that hasbeenwidely used in the academiccommunity on
Unix-compatible systems (although it has now been available on nearly any operating
systems you can think of). In general, the PDF version will be updated prior to the
online HTML version.

? You will �nd a list of web links and referencesto book chaptersafter eachchapter which

v

vi Preface

contains additional materials that ambitious learners will �nd helpful to further your
understanding of the subject.

? Throughout the text there would be many examples. In this tutorial, you will �nd two
types of examples — examples and illustrations . Illustrations are intended to demon-
strate a particular concept just mentioned, and are shorter in general. You will �nd them
embedded inline throughout the tutorial. On the other hand, examples are more func-
tional and resemblepractical scripts, and are usually simpli�ed versions of such. They
usually demonstrate how dif ferent parts of a script can work together to realize the
desired functionalities or consolidate some important concepts learned in a particular
chapter.

? If applicable, therewill be someexercisesin the form of conceptconsolidation questions
as well as programming exercisesat the end of eachchapter to give readerschancesto
test how much they understand the materials learned from this tutorial and apply their
knowledge through practice.

This is the �rst edition of the Perl 5 tutorial. It primarily focuseson fundamental Perl pro-
gramming knowledge that any Perl programmer should be familiar with. I start with some
basic ideas behind computer programming in general, and then move on to basic Perl pro-
gramming with elementary topics such asoperators and simple data structures. The chapter
on scoping and subroutines is the gateway to subsequent,but more advanced topics such as
referencesand object-oriented programming. The remaining chapters are rather assorted in
topic, covering the use of �lehandles, �le I/O and regular expressions in detail. The �nal
chapter on CGI programming builds on knowledge covered in all earlier chapters. Readers
will learn how to write a Perl program that can be used for dynamic scripting on the World
Wide Web. However short, the main text already embracesthe most important fundamental
subjects in the Perl programming language. In the appendices, instructions are given on ac-
quiring and installing Perl modules, setting up a basicbut functional CGI-enabled Web server
for script testing, and there is a voluminous coverageof Unix fundamentals. As much of Perl
is basedon Unix concepts,I believe a brief understanding of this operating system is bene�-
cial to Perl programmers. While authoring of this tutorial cannot go inde�nitely , topics that
were planned but cannot be included in this edition subject to time constraints are deferred to
the secondedition. A list of thesetopics appear at the end of this document for your reference.

It is important for me to reiterate that this document is not intended to be a substitute for
the of�cial Perl manual pages (aka man pages) and other of�cial Perl literatur e. In fact, it is
the set of manual pages that covers the Perl language in suf�ciently �ne detail, and it will
be the most important set of document after you have accumulated certain level of knowl-
edge and programming experience. The Perl man pagesare written in the most conciseand
correct technical parlance, and as a result they are not very suitable for new programmers
to understand. The primary objective of this tutorial is to bridge the gap so as to supple-
ment readerswith suf�cient knowledge to understand the man pages.Therefore, this tutorial
presentsa dif ferent perspective compared with someother Perl guidebooks available at your
local bookstores from the mainstream computer book publishers. With a Computer Science
background, I intend to go more in-depth into the principles which are central to the study of
programming languages in general. Apart from describing the syntax and language features
of Perl, I also tried to draw together the classicalprogramming language design theories and
explained how they are applied in Perl. With this knowledge, it is hoped that readers can
better understand the jargons presented in manual pages and the principles behind. Perl is
attributed by some as a very cryptic language and is dif �cult to learn. However , those who
are knowledgeable with programming language design principles would agree Perl imple-

vii

ments a very rich set of language features,and therefore is an ideal language for students to
experiment with dif ferent programming language design principles taught in classin action.
I do hope that after you have �nished reading this tutorial you will be able to explore the
Perl horizons on your own with con�dence and experience the exciting possibilities associ-
ated with the language more easily. “To helpyou learnhowto learn” has always been the chief
methodology followed in this tutorial.

Time �ies. Today when I am revising this preface,which was actually written before I made
my initial preview releasein late 2001according to the timestamp, I am aghast to �nd that
it has already been nearly two years since I started writing it. Indeed, a lot of things have
changed in two years. Several Perl manpages written in tutorial-style have been included
into the core distribution, which are written in a more gentle way targeted at beginners. There
are also more Perl resourcesonline today than it has been two years ago. However , I believe
through preparing this tutorial I have also learnt a lot in the process.

At last, thank you very much for choosing this tutorial. Welcometo the exciting world of Perl
programming!

Bernard Chan
31st August, 2003

viii Preface

Typographical Conventions

Although care has been taken towards establishing a consistent typographical convention
throughout this tutorial, considering this is the �rst time I try to publish in LATEX , slight de-
viations may be found in certain parts of this document. Here I put down the convention to
which I tried to adhere:

Elements in programming languagesare typeset in monospace font .

Keywor ds are typeset in bold .

Profound sayings or quotes are typeset in italic.

In source code listings, very long lines are broken into several lines. { is placed wherever a
line break occurs.

Chapter 1

Introduction to Programming

1.1 What is Perl?

Extracted from the perl manpage,
“Perl is an interpretedhigh-levelprogramminglanguagedevelopedby Larry Wall.”

If you have not learnt any programming languages before, as this is not a prerequisite of
this tutorial, this de�nition may appear exotic for you. The two keywor ds that you may not
understand are “interpr eted” and “high-level”. Becausethis tutorial is mainly for those who
do not have any programming experience, it is better for me to give you a general pictur e as
to how a computer program is developed. This helps you understand this de�nition.

1.2 A Trivial Introduction to Computer Programming

You should know that, regardless of the programming language you are using, you have to
write something that we usually refer to as source code, which include a set of instructions
for the computer to to perform some operations dictated by the programmer. There are two
ways as to how the sourcecode can be executedby the Central ProcessingUnit (CPU) inside
your computer. The �rst way is to go through two processes,compilation and linking , to
transform the sourcecode into machine code, which is a �le consisting of a seriesof numbers
only. This �le is in a format that can be recognized by the CPU readily, and does not require
any external programs for execution. Syntax errors are detected when the program is being
compiled. We describe this executable �le as a compiled program. Most software programs
(e.g. most EXEsfor MS-DOS/W indows) installed in your computer fall within this type.

NOTES

There aresomesubtleties, though. For example, the compiler that comeswith Visual
Basic 6 Learning Edition translates source code into p-code (pseudo code) which
has to be further converted to machine code at runtime. Suchan EXEis described as
interpr eted instead. Therefore,not all EXEsare compiled.

On the other hand, although Javais customarily considered an interpr eted language,
Javasource �les are �rst compiled into bytecode by the programmer, so syntactical
errors can be checkedat compile time.

1

http://www.perldoc.com/perl5.8.0/pod/perl.html

2 Chapter 1 Introduction to Programming

Another way is to leave the program uncompiled (or translate the sourcecode to an interme-
diate level between machine code and sourcecode, e.g. Java).However , the program cannot
be executed on its own. Instead, an external program has to be used to execute the source
code. This external program is known asan interpreter , becauseit actsasan intermediary to
interpr et the sourcecode in a way the CPU can understand. Compilation is carried out by the
interpr eter before execution to check for syntax errors and convert the program into certain
internal form for execution. Therefore, the main dif ferencebetween compiled programs and
interpr eted languagesis largely only the time of compilation phase.Compilation of compiled
programs is performed early, while for interpr eted programs it is usually performed just
before the execution phase.

Every approach has its respective merits. Usually, a compiled program only has to be
compiled once,and thus syntax checking is only performed once. What the operating system
only needs to do is to read the compiled program and the instructions encoded can be
arranged for execution by the CPU dir ectly. However , interpr eted programs usually have to
perform syntax check every time the program is executed, and a further compilation step
is needed. Therefore, startup time of compiled programs are usually shorter and execution
of the program is usually faster. For two functionally equivalent programs, a compiled
program generally gives higher performance than the interpr eted program. Therefore,
performance-critical applications are generally compiled. However , there are a number of
factors, e.g. optimization, that in�uence the actual performance. Also, the end user of a com-
piled program does not need to have any interpr eters installed in order to run the program.
This convenience factor is important to some users. On the other hand, interpr eters have to
be installed in order to executea program that is interpr eted. One example is the JavaVirtual
Machine (JVM) that is an interpr eter plugged into your browser to support Java applets.
Javasource �les are translated into Javabytecode, which is then executed by the interpr eter.
There are some drawbacks for a compiled program. For example, every time you would like
to test your software to seeif it works properly, you have to compile and link the program.
This makes it rather annoying for programmers to �x the errors in the program (debug),
although the use of make�les alleviates most of this hassle from you. Becausecompilation
translates the source code to machine code which can be executed by the hardwar e circuitry
in the CPU, this processcreatesa �le in machine code that depends on the instruction set
of the computer (machine-dependent). On the other hand, interpr eted programs are usually
platform-independent , that is, the program is not affected by the operating system on which
the program is executed. Therefore, for example, if you have a Javaapplet on a Website, it can
most probably be executed correctly regardless of the operating system or browser a visitor
is using. It is also easier to debug an interpr eted program becauserepeated compilation is
waived.

Recall that I mentioned that a compiled program consists entirely of numbers. Becausea
CPU is actually an electronic circuit, and a digital circuit mainly deals with Booleans(i.e. 0
and 1), so it is obvious that programs used by this circuit have to be sequencesof 0s and 1s.
This is what machine code actually is. However , programming entirely with numbers is an
extremedeterrent to computer programming, becausenumeric programming is highly prone
to mistakes and debugging is very dif �cult. Therefore, assembly language was invented to
allow programmers to use mnemonic names to write programs. An assembler is used to
translate the assembly language source into machine code. Assembly language is described
asa low-level programming language, becausethe actions of an assembly language program
are mainly hardwar e operations, for example, moving bits of data from one memory location
to another. Programming using assembly language is actually analogous to that of machine
code in disguise, so it is still not programmer friendly enough.

1.2 A Trivial Introduction to Computer Programming 3

TERMINOLOGY

Instruction set refers to the set of instructions that the CPU executes. There are a
number of types of microprocessorsnowadays. For example, IBM-compatible PCs
are now using the Intel-based instruction set. This is the instruction set that most
computer users are using. Another prominent example is the Motor ola 68000series
microprocessors in Macintosh computers. There are some other microprocessor
types which exist in minority . The instruction sets of these microprocessorsare
dif ferent and, therefore, a Windows program cannot be executed unadapted on a
Macintosh computer. In a more technical parlance, dif ferent microprocessorshave
dif ferent instruction set architectures .

Somemathematicians and computer scientists began to develop languageswhich were more
machine-independent and intuitive to programmers that today we refer to as high-level
programming languages. The �rst several high-level languages, like FORTRAN, LISP,
COBOL, were designed for specialized purposes. It was not until BASIC (Beginner's All-
purpose Symbolic Instruction Code) was invented in 1966that made computer programming
unpr ecedentedly easy and popular . It was the �rst widely-used high-level language for
general purpose. Many programmers nowadays use C++, another high-level language, to
write software programs. The reasonwhy we call these “high-level languages” is that they
were built on top of low-level languages and hid the complexity of low-level languages
from the programmers. All such complexities are handled by the interpr eters or compilers
automatically. This is an important design concept in computer sciencecalled abstraction .

That's enough background information and we can now apply the concepts learned above
to Perl. Perl (Practical Extraction and Reporting Language) was designed by Larry Wall,
who continues to develop newer versions of the Perl language for the Perl community today.
Perl does not create standalone programs and Perl programs have to be executed by a Perl
interpr eter. Perl interpr eters are now available for virtually any operating system, including
but not limited to Micr osoft Windows (Win32) and many �avours of Unix. As I quoted above,
“Perl is a languageoptimizedfor scanningarbitrary text �les, extractinginformationfromthosetext
�les, and printing reportsbasedon that information.” This precisedescription best summarizes
the strength of Perl, mainly becausePerl has a powerful set of regular expressions with
which programmers can specify search criteria (patterns) precisely. You are going to seea
whole chapter devoted to regular expression in Chapter 9. Perl is installed on many Web
serversnowadays for dynamic Web CGI scripting. Perl programs written asCGI applications
are executed on servers where the Perl source �les are placed. Therefore, there is no need to
transfer the Perl sourceto and from the server (asopposed to client-side scripts like JavaScript
or Javaapplets). Guestbooks,discussion forums and many powerful applications for the Web
can be developed using Perl.

There is one point which makes Perl very �exible — there is always more than one approach
to accomplish a certain task, and programmers can pick whatever approach that best suits
the purpose.

4 Chapter 1 Introduction to Programming

1.3 Scripts vs. Programs

There has always been some arguments over whether to use the term “script” or “pr ogram”
for Perl source �les. In general, a piece of code that is executed by hardwar e or a software
interpr eter, written in some kind of programming languages, is formally called a “pr ogram”.
This is a general term that applies to programs written in machine instructions, or any pro-
grams that are compiled or interpr eted. However , it is also common today to hear that people
use the term “script” to refer to programs that are interpr eted, especially those executed on
the command line. In my opinion, it is not important to draw a distinction between the two
terms as both are considered equally acceptable and understandable nowadays. In many
situations people just use both interchangeably.

I am more inclined towards calling Perl programs and CGI programs running on a Perl
backend asscripts, so I will adhere to this terminology in this tutorial.

1.4 An Overview of the Software Development Process

An intuitive software development processis outlined below. Note that this processis not
tailor ed for Perl programming in particular . It is a general development processthat can be
applied to any programming projectswith any programming languages.For additional notes
speci�c to Perl, pleaserefer to the next chapter.

Becausethis tutorial does not assume readers to have any programming experience, it is
appropriate for me to give you an idea as to the procedure you will most probably follow
when you write your programs. In general, the processof development of a software project
could be broken down into a number of stages.Here is an outline of the stagesinvolved:

? Requirements Analysis
First you need to identify the requirements of the project. Simply speaking, you will
need to decide what your program should do (known as Functional Requirements),
and note down other requirements that are important but not related to the functions of
your program (known as Non-functional Requirements), for example, a requirement
that the user interface should be user friendly . You have to make a list of the require-
ments, and from it you will need to decide whether you have the capability to complete
them. You may also want to prioritize them such that the most important functionalities
are developed �rst, and other parts can be added subsequently.

? Systems Design
From the requirementsdetermined you can then de�ne the scopeof the project. Instead
of putting the whole program in one piece, we will now organize the program into
several components (or subsystems — a part of the entire system). As we will discuss
later in this tutorial, modularization facilitates code reuseand make correction of bugs
(debug) easier. Two major models exist today — decomposition basedon functions and
decomposition basedon objects. After you have �xed the model, you decide on which
functions or object methods are to be associatedwith which source �le or object, and
determine how thesecomponents interact with eachother to perform the functionalities.
Note that you don't need to decide on how thesesource�les or objectsare implemented
in real source code at this stage — it is just an overall view of the interaction between

1.4 An Overview of the Software Development Process 5

the components. Weemphasize functional decomposition in the �rst part of the tutorial,
while object-oriented programming will be covered in a later part of this tutorial.

? Program Design
After we have determined how the components interact with each other, we can now
decide how each function or object method is implemented. For each function, based
on the actions to perform you have to develop an algorithm , which is a well-de�ned
programming-language-independent procedure to carry out the actions speci�ed. You
may want to use a �owchart or some pseudocode to illustrate the �ow of the program.
Pseudocode is expressedin a way resembling real programming source code, except
language-dependent constructs are omitted. As pseudocode is language independent,
you can transform an idea from pseudocode to source code in any programming lan-
guagesvery easily. There isn't a single standardized pseudocodesyntax. In many cases,
pseudocodecan even be written in English-like statementsbecausepseudocode is writ-
ten to demonstrate how a program is supposed to work, and provided it communicates
the idea clearly it suf�ces. It is up to you as the author to expresspseudocode in what-
ever way the algorithm is best illustrated.

? Coding
This is largely the continuation of the Program Design stageto transform your algorithm
into programming language constructs. If you have worked out the algorithm properly
this should be a piece of cake.

? Unit Testing
Unit testing corresponds to Program Design. As each function or object method has a
prede�ned behaviour, they can be tested individually to seeif such behaviour agree to
that de�ned. Most of the time when we are talking about debugging, we are describing
this stage.

? Systems Testing
SystemsTesting correspondsto SystemDesign. This is to test if the components interact
with eachother in exactly the sameway asdesigned in the SystemsDesign stage.

? Requirements Validation
This correspondsto requirementsanalysis. The softwaredeveloped is compared against
the requirementsto ensureeachfunctionality hasbeenincorporated into the systemand
works asexpected.

? Maintenance
By now the software hasbeendeveloped but you cannot simply abandon it. Most prob-
ably we still need to develop later versions, or apply patches to the current one as new
bugs are found in the program. Software for commercial distribution especially needs
investment of a lot of time and effort at this stagecapturing user feedback,but software
not distributed commercially should also pay attention to this stageas this affects how
well your software can be further developed.

Of course, for the examples in this tutorial that are so short and simple we don't need such an
elaborate development procedure. However , you will �nd when you develop a larger-scale
project that having a well-de�ned procedure is essential to keep your development process
in order.

This is just one of the many processmodels in existence today. Discussion of such process
models can be found in many fundamental text for Software Engineering , and are beyond

6 Chapter 1 Introduction to Programming

the scope of this tutorial. Actually , what I have presented was a variant of the Waterfall
process model, and is considered one that, when employed, is likely to delay project
schedules and result in increased costs of software development. The reason I present it
here is the Waterfall model is the one that is easiest to understand. Becausepresentation
of processmodels is out of the scope of the tutorial, some Web links will be presented at
the end of this chapter from which you will �nd selected texts describing processmodels,
including the Rational Uni�ed Processwhich I recommend as an impr oved processmodel
for larger-scaledevelopment projects.Adoption of an appropriate processmodel helps guide
the development process with optimized usage of resources, increased productivity and
software that are more fault-tolerant.

Web Links

1.1 Evolution of Programming Languages
http://lycoskids.infoplease.com/ce6/sci/A0860536.html

1.2 Rational Uni�ed ProcessWhitepapers
http://www.rational.com/products/rup/whitepapers.jsp

http://lycoskids.infoplease.com/ce6/sci/A0860536.html
http://www.rational.com/products/rup/whitepapers.jsp

Chapter 2

Getting Started

2.1 What can Perl do?

I understand it is a full wastage of time for you to have read through half of a book to �nd
that it is not the one you are looking for. Therefore, I am going to let you know what you will
learn by following this tutorial asearly aspossible.

If you are looking for a programming language to write an HTML editor that runs on the
Windows platform, or if you would like to write a Web browser or of�ce suite, then Perl does
not seemto be an appropriate language for you. C/C++, Javaor (if you are using Windows)
Visual Basicare likely to be more appropriate choicesfor you.

Although it appears that Perl is not the optimum language for developing applications with
a graphical user interface (but you can, with Perl/Tk or native modules like WIN::GUI), it is
especially strong in doing text manipulation and extraction of useful information. Therefore,
with databaseinterfacing it is possible to build robust applications that require a lot of text
processingaswell asdatabasemanagement.

Perl is the most popular scripting language used to write scripts that utilize the Common
Gateway Interface (CGI), and this is how most of us got to know this language in the �rst
place. A cursory look at the CGI ResourceIndex web site provided me a listing of about 3000
Perl CGI scripts, compared with only 220written with C/C++, as of this writing. There are
quite many free Web hosts that allow you to deploy custom Perl CGI scripts, but in general
C/C++ CGI scripts are virtually only allowed unless you pay. In particular , there are several
famous programs written in Perl worth mentioning here:

? YaBB is an open source bulletin board system. While providing users with many ad-
vanced features that could only be found on commercial products, it remains a free
product. Many webmasters are now using YaBBto set up their BBS.Another popular
BBSwritten in Perl is ikonboard , featuring a MySQL/Postgr eSQLdatabaseback-end.

? Thanks to the powerful pattern matching functions in Perl, search engines can also be
written in Perl with unparalleled ease.Perlfect Search is a very good Web site indexing
and searching system written in Perl.

You will learn more about Perl CGI programming in Chapter 10 of this tutorial.

7

http://www.cgi-resources.com
http://www.yabbforum.com
http://www.ikonboard.com
http://perlfect.com/freescripts/search

8 Chapter 2 Getting Started

2.2 Comparison with Other Programming Languages

There are many programming languages in use today, each of which placing its emphasis
on certain application domains and features. In the following section I will try to compare
Perl with several popular programming languages for the readers to decide whether Perl is
appropriate for them.

2.2.1 C/C++

Perl is written in the C programming language. C is extensively used to develop many
system software. C++ is an extension of C, adding various new featuressuch asnamespaces,
templates, object-oriented programming and exception handling etc. BecauseC and C++
programs are compiled to native code, startup time of C/C++ programs is very short and
thus can be executed very ef�ciently . Perl allows you to delegate part of your program
in C through the Perl-C XS interface. This Perl-C binding is extensively used by crypto-
graphic modules to implement the core cryptographic algorithms, becausesuch modules are
computation-intensive.

While C/C++ is good for performance-critical applications, C/C++ suffers from a number
of disadvantages. First, C/C++ programs are platform dependent. A C/C++ program
written on Unix is dif ferent from one on Windows becausethe libraries available on dif ferent
platforms are dif ferent. Second,becauseC/C++ is a very structured language, its syntax is
not as �exible as scripting languages such as Perl, Tcl/Tk or (on Unix platforms) bash. If
you are to write two functionally equivalent programs with C/C++ and Perl, very likely
the C/C++ version requires more lines of code compared with Perl. And also, impr operly
written C/C++ programs are vulnerable to memory leak problems where heap memory
allocated are not returned when the program exits. On a Web server running 24� 7 with a lot
of visitors, a CGI script with memory leak is suf�cient to paralyze the machine.

2.2.2 PHP

Perl hasbeenthe traditional language of choice for writing server-side CGI scripts. However ,
in recentyears there has been an extensive migration from Perl to PHP. Many programmers,
especially those who are new to programming, have chosen PHP instead of Perl. What are
the advantagesof PHP over Perl?

PHP is from its infancy Web-scripting oriented. Similar to ASP or JSP, it allows embedding
of inline PHP code inside HTML documents that makes it very convenient to embed small
snippets of PHP code, e.g. to update a counter when a visitor views a page. Perl needs
an additional package “eperl” to implement a similar functionality . Also, it inherits its
language syntax from a number of languagesso that it has the best featuresof many dif ferent
languages. It mainly inherits from C/C++, and portions from Perl and Java. It uses I/O
functions similar to that in C, that are also inherited into Perl, so it is relatively easy for Perl
programmers to migrate to PHP.

While PHP supports the object-oriented paradigm, most of its functionalities are provided
through functions. When PHP is compiled the administrator decides the setsof functionali-
ties to enable. This in turn determines the setsof functions enabled in the PHP installation.
I'm personally sceptical of this approach, becausein practice only a small subset of these

2.2 Comparison with Other Programming Languages 9

functions is frequently used. On the other hand, Perl only hasa small setof intrinsic functions
covering the most frequently used functionalities. Other functionalities are delegated to
modules which are only installed and invoked as needed. As I will intr oduce shortly and in
Appendix A, the Comprehensive Perl Ar chive Network (CPAN) contains a comprehensive
and well-or ganized listing of ready-made Perl modules that you can install and use very
easily.

2.2.3 Java/JSP

Sun Micr osystemsdeveloped the Javalanguage and intended to target it asa general purpose
programming language. It is from the ground up object-oriented and platform independent.
Functionalities are accessedthrough the JavaAPI, consisting of hierarchies of classessimilar
to that of Perl. JavaServer Pages(JSP)is a Web scripting environment similar to ASP except
with a Javasyntax. Similar to C/C++, the Javasyntax is very structured and thus are not as
�exible asscripting languageslike Perl. Also, Javaitself is not just an interpr eter, it is a virtual
machine over which programmers are totally abstracted from the underlying operating
system platforms, which allows the Java API to be implemented on top of this platform-
independent layer. For those who have programmed in Javabefore, you will probably �nd
that the JavaVirtual Machine takes rather long time to load, especially on lower -end systems
with limited computational power. This defers the possibility of widespr ead deployment of
Javaprograms.

While Perl is not strictly a general-purpose programming language like Java, I found it
dif �cult to compare Perl and Javabecauseof their dif ferent natures. However , if con�ned
to the purpose of Web server scripting, I generally prefer Perl to JSPfor its �exibility and
lightweight performance. Despite this, I feel that Javais a language that is feature-rich and if
time allows, you are strongly encouraged to �nd out more about this stupendous language,
which is expecting increasing attention in mobile and embedded devices because of its
platform independence.

2.2.4 ASP

Active Server Pages(ASP) is only available on Windows NT-seriesoperating systemswhere
Internet Information Services(IIS) is installed (although alternative implementations of ASP
on other system architectures exist, e.g. Sun Chili!Soft ASP, which is a commercial product
that runs on Unix, but generally considered not very stable).

Running on a Windows Web server, ASP can impose a tighter integration with Micr osoft
technologies, so that the use of, say, ActiveX data objects (ADO) for databaseaccesscan be
made a lot easier. However , IIS is especially vulnerable to remote attacks when operated
as a Web server. Numer ous service packs have been releasedto patch the security holes in
IIS and Windows NT. However , new holes are still being discovered from time to time that
makes the deployment of Windows NT/IIS as the Web server of choice not very favourable.
On the other hand, the use of Apache, the renowned Web server for Unix and now for other
operating systems as well, has far less security concerns and are less susceptible to remote
attacks. Apache also has the largest installation baseamong all Web server software, taking
up more than 60%of the market share.

10 Chapter 2 Getting Started

2.3 What do I need to learn Perl?

You don't need to pay a penny to learn and use Perl. Basically, a text editor that handles
text-only �les and a working installation of the Perl interpr eter are all that you will need.

Figure2.1: Editing aPerl source�le with GVIM, running on GNU/Linux

Under Micr osoft Windows, Notepad meets the minimum requirement. However , a whole
page of code in black is not visually attractive in terms of readability. Sometext editors have
the feature of syntax highlighting , where dif ferent parts of a statement are displayed in
dif ferent colours. Good colouring makes the source �les more pleasurable to look at (such
colouring is used for display only and will not be saved to �le). However , avoid using wor d
processors like Micr osoft Word or Wordpad which add proprietary control codes on �le
save by default. The Perl interpr eter does not recognize these special formats. If you have
to use these wor d processors,ensure that your �les are saved as plain text ASCII format so
that the Perl interpr eter can accessthem. AnyEdit and UltraEdit are nice text editors on the
Windows platform. Under Unix or Linux, emacsor vim are stupendous text editors featuring
syntax highlighting pro�les for most programming languageswith a lot of powerful features.
Fig. 2.1shows a screenshotof a Perl source �le edited with GVIM, a port of vim that runs on
Windows, X-Windows with the GTK library on Unix/Linux and many other platforms. This
is my favourite text editor and is used to construct my entire Web site.

If you are using one of the mainstream operating systems, the perl interpr eter can be
downloaded from the download section of perl.com. perl.com is the of�cial Web site for the
Perl language and you can �nd the download links to all available interpr eter versions there.
Choose the version which matches your operating system. When you go to the download
page you will seetwo versions, namely the stable production releaseand the experimental
developer 's release. The stable releaseis the version I recommend to new users, because
the developer 's version is for more advanced users to beta test the new version. It may still

http://www.anyedit.org
http://www.ultraedit.com
http://www.perl.com

2.4 Make Good Use of Online Resources 11

contain bugs and may give incorrect results. The �les you have to download are under the
heading “binary distribution”. Do not download the source code distribution unless you
know exactly how to compile and install them. In caseyou are using an operating system
that is not listed, a good place to �nd a binary distribution for your operating system is the
CPAN , located at here, which contains a fairly comprehensive list of platforms on which Perl
can run.

For Windows users,most probably you should download the Activestate distribution of Perl.
It is very easyto install, with some extra tools bundled in the packagefor easy installation of
new modules. For GNU/Linux users,most probably Perl is already installed or available as
RPM (Redhat PackageManager) or DEB (Debian packages)formats. As many Linux distri-
butions already have builtin support for RPM packages,you may look at your installation
discs and you are likely to �nd some RPM binaries for Perl if it is not yet installed. For other
Unix systems,you may �nd tarballs containing the Perl binaries. If no binaries are available
for your system, you can still build from sources by downloading the source distribution
from the CPAN. To check if perl is installed on your system, simply open a terminal and type
perl -v . If Perl is installed you will have the version information of Perl installed displayed
on screen. If error messagesappear, you will need to install it.

Installation of Perl will not be covered in this tutorial, and you should look for the installation
help documents for details.

NOTES

BecausePerl is an open sourcesoftware,which releasesthe sourcecode to the public
for free,you will seethe sourcecode distribution listed. Yet for usual programming
purposes there is no need to download the source �les unless binary distributions
are not available for your system.

An exception is if you are using one of the operating systems in the Unix family
(including Linux). There are already compilation tools in these operating systems
and you canmanually compile Perl from sourcesand install it afterwar ds. However ,
note that compilation can be a very time-consuming process, depending on the
performance of your system. If you are using Linux, binary distributions in the
form of RPM or DEB packagescan be installed very easily. Only if you cannot �nd a
binary distribution for your platform that you are encouraged to install from source
package.

2.4 Make Good Use of Online Resources

You may need to seekreferencewhile you are learning the language. As a new user you are
not recommended to start learning Perl by reading the man-pagesor the referencemanuals.
They are written in strict technical parlance that beginners, especially those who do not
have prior programming experience or basic knowledge in Computer Science,would �nd
reading them real headaches.You are recommended to follow this tutorial (or other tutorials
or books) to acquire some basic knowledge �rst, and thesereferencedocuments will become
very useful for ambitious learners to know more about the language, or when you have
doubt on a particular subject you may be able to �nd the answers inside. In this course

http://www.cpan.org
http://www.perl.com/CPAN-local/ports/index.html
http://www.activestate.com/Products/ActivePerl

12 Chapter 2 Getting Started

I will try to cover some important terms used in the reference materials to facilitate your
understanding of the text. For the time being, you may want to have severalbooks on Perl for
cross-referencing purposes. I have tried to write this tutorial in a way that beginners should
�nd it easy to follow , yet you may need to consult these books if you have any points that
you don't understand fully .

Although you are not advised to read the of�cial referencedocuments too early, in somelater
parts I may refer you to read a certain manpage. A manpage, on Unix/Linux systems, is a
help document on a particular aspect. To read a particular manpage, (bring up a terminal
if you are in X-Windows) type man followed by the name of the manpage, for example, man
perlvar , the perlvar manpage will be displayed. For other platforms, manpagesmay usually
come in the format of HTML �les. Consult the documentation of your distribution for details.
There is an online version of the Perl of�cial documentation at perldoc.com. It contains the
Perl man pagesaswell asdocumentation of the modules shipped with Perl. In fact, there are
now several manpages that are targeted at novice programmers. For instance, the perlintr o
manpage is a brief intr oduction to the fundamental aspects of the Perl language that you
should master fully in order to claim yourself a Perl programmer.

You are also reminded of the vast varieties of Perl resources online. There are many Perl
newsgroups on the USENET and mailing lists devoted to Perl. Your questions may be readily
answered by expert Perl programmers there. Of course, try to look for a solution from all the
resourcesyou can �nd including the FAQs before you post! Otherwise, your question may
simply be ignored. Perl Monks is also a very useful resourceto Perl users.

dmoz.org contains a nice selection of Perl-related sites. You can �nd a similar list of entries
on Yahoo!.

Google is the best search engine for programmers. You can usually get very accuratesearch
results that deliver what you need. For example, by specifying the terms “Perl CGI.pm
example”, you will get screenfuls of links to examples demonstrating the various uses of
the CGI.pm module. As you will seelater, this module is the central powerhouse allowing
you to handle most operations involving CGI programming with unparalleled ease. For
materials not covered in this tutorial or other books, a search phrase can be constructed in
a similar manner that allows you to �nd documentation and solutions to your questions at
your �ngertips.

Of course, don't forget to experiment yourself! CPAN , the Comprehensive Perl Ar chive
Network is a nice place whereyou candownload a lot of useful modules contributed by other
Perl programmers. By using these modules you can enforce code reuse, rather than always
inventing code from scratch again. There are so many modules on the CPAN available that
you would be surprised at how active the Perl community has been. SomeCPAN modules
are well-documented, some are not. You may need to try to �t the bits and pieces together
and seeif it works. This requiresmuch time and effort, but you can learn quite a lot from this
process.

2.5 The Traditional “Hello World” Program

Traditionally , the �rst example most book authors use to intr oduce a programming language
is what is customarily called a “Hello World” program. The action of this program is ex-

http://www.perldoc.com
http://www.perldoc.com/perl5.8.0/pod/perlintro.html
http://www.perlmonks.org
http://dmoz.org/Computers/Programming/Languages/Perl
http://www.yahoo.com
http://www.google.com
http://www.cpan.org

2.5 The Traditional “Hello World” Program 13

tremely simple — simply displays the text “Hello World” to the screenand doesnothing else.
For all examples in this tutorial where source code is given in the text, you are encouraged
to type them in yourself instead of executing the examples downloaded from my Web site,
since it is more likely that by doing so you would understand the materials more quickly .
Let's write a “Hello World” program to seethe procedureswe take to develop a Perl program.

If you are under Windows, it is a good practice to check if the path to the Perl interpr eter
has been added to the path list in C:nAutoexec.bat. In this way, you can change to the path
containing your Perl source �les and can run the interpr eter without specifying its path. The
setup program of your distribution would probably have done it for you. If it hasn't, append
the path to the end of the list and end it with a semicolon. A typical path list looks like this,
the last one in this example is the path to the perl interpr eter (note that your path may be
dif ferent):

SET PATH = C: \WI NDOWS; C: \WI NDOWS\ COMMAND; C: \ WI NDOWS\ SYSTEM; C: \P ERL\ BI N;

NOTES

The use of Autoexec.bat is now obsoletestarting from Windows 2000.Setting of en-
vir onment variables should be carried out by right-clicking on the “My Computer ”
icon, and then choosethe “Pr operties” option. Now select the “Advanced” tab and
then click on the “Envir onment Variables” button at the bottom. To make the perl
interpr eter available to all users on the system, the path should be appended to the
PATH variable in the “System variables” section. If you modify the PATH variable
in the “User variables” section, only the user concerned (presumably you) will be
affected.

For Unix/Linux, check your PATH variable and seeif the dir ectory containing the perl exe-
cutable is present (usually /usr/bin). You can look at the list of paths by typing echo $PATH
on the command line (be careful of exact capitalization!). Look for “/usr/bin” in the colon-
separatedvalues. On somesystems,the path to perl would be“/usr/local/bin” or something
else, so pleasecheck carefully . You may need to modify the startup login scripts like .login,
.bashrc, .pro�le etc. so that you don't need to set PATH or specify the full path to perl every
time if perl is installed at some weir d locations. A convenient workar ound is to create a
symbolic link in a dir ectory included in PATH, e.g. /usr/bin that points to the perl executable.

EXAMPLE 2.1

1 #! / usr/b i n/ per l - w
2 # Exampl e 2. 1 - Hel l o Wor l d
3
4 # pr i nt t he t ext t o t he scr een
5 pr i nt " Hel l o, Wor l d! \n" ;

Here we outline the stepsfor creating this simple program on Windows and Linux.

Microsoft Windows

14 Chapter 2 Getting Started

1. Open Notepad (or any other text editor you choose)and type in the sourcecode shown
above. Note that the line numbers on the left are for identi�cation of lines only and do
NOT type them into the text editor. Pleasemake sure wor d wrap is disabled.

2. Save the �le as hello.pl. A few text editors, like Notepad, usually append the “.txt”
extension to the �lename when saving. You may put a pair of double quotes around
the �lename to circumvent this behaviour. Also, if you are using Windows 2000 or
above and would like to useNotepad, pleaseensure that the �le encoding is set to ANSI
instead of Unicode.

3. Bring up an MS-DOS prompt window and change to the dir ectory containing your
newly created �le. Say if you have saved to ”C:nperl examples”, then type cd
C: nperl examples and pressEnter. Put a pair of double quotes around the path if any
dir ectories in the path contains spaces(In fact I don't recommend placing Perl source
�les in dir ectorieswith namescontaining spaces.It only complicates matters).

4. Executethe program by typing perl -w hello.pl and pressenter.

Unix or GNU/Linux

1. Open any text editor (vim, emacs,pico, kedit) and type in the source code shown
above. Note that the line numbers on the left are for identi�cation only and do NOT
type them into the text editor. Pleasemake sure wor d wrap is disabled.

2. Savethe �le as hello.pl. Note that the path on line 1 has to match the path to perl on
your system. Also, no spacesshould precedethe `#' character and no empty lines are
allowed before this special line (traditionally known asthe `shebang' line).

3. If you are in X-Windows environment, bring up a terminal window . Change to the
dir ectory containing the newly created �le using the cd command.

4. In order to run it without specifying the perl interpr eter, set the �le accessprivilege
to user executable by using the chmod command. The command should be chmod u+x
hello.pl and pressEnter.

5. Executethe program by typing ./hello.pl and then pressEnter.

NOTES

Even if you are using Unix/Linux, it is not absolutely needed to chmod your perl
source �les. In fact, you only need to make those source �les executable if you
want them to be dir ectly invoked without specifying the name of the interpr eter
(i.e. perl). In this case,the shell will look at the �rst line of the �le to determine
which interpr eter is used, so the #!/usr/bin/perl line must exist. Otherwise, the
�le cannot be executed. If you only intend to executethe �le in Unix or Linux using
perl -w filename.pl , then �lename.pl need not be given an executablepermission.
As you will learn later, you may have some Perl source �les that are not invoked
dir ectly. Instead, they are being sourced from another source �le and don't need to
be executable themselves. For these �les, you don't need to chmod them and the
default permission is adequate.

2.6 How A Perl Program Is Executed 15

If there is not any errors, you should see the wor ds “Hello, World!” under the command
prompt. For such a simple program it is not easyto make mistakes. If error messagesappear,
check carefully if you have left out anything, becausea trivial mistake is suf�cient to end
up with lots of error messagesif you are not careful. Also check if you are using the latest
stable version of Perl 5. All examples in this tutorial have been tested with Perl 5.8.0Win32
(ActiveState distribution) and Perl 5.8.0 under GNU/Linux, but it should work for other
distributions or versions aswell unless otherwise noted.

The -w is an example of a switch . You specify a switch to enable a particular interpr eter
feature. -w is speci�ed so that warning messagesif any are displayed on screen. Under no
circumstancesshould this switch be omitted becauseit is important, especially asa beginner,
to ensure that the code written is correct. It also helps catch somemistakes that are otherwise
dif �cult to capture.

The core of the program is on line 5. It is this statement that prints the text delimited by
quotation marks to the screen (actually in a more accurate parlance the text is sent to the
standard output , which is the screenby default).

Notice the strange nn at the end? It is one of the escapecharacters which would be described
later in more detail. nn is used to insert a line break. Therefore, you seea blank line before
returning to the command prompt.

Lines precededwith a # (sharp) sign are comments and are ignored by the perl interpr eter.
A comment does not need to be on its own line, it can be put at the end of a line as well. In
that case,the remaining of the line (starting from # and until the end of the line) is regarded
as a comment. Comments are helpful for you or other programmers who read your code to
understand the purpose of the statement(s). You can put anything you like as comments.
Line 1 is also a comment as it is of interest to the shell only instead of the perl interpr eter
itself. The switch -w here is the sameas that speci�ed under the command line. This is read
together with the path to perl to enable the display of warnings.

A Perl script consistsof statements, and eachstatement is terminated with a semicolon (;). A
statement is rather like a sentencein human languages which carries a certain meaning. For
computer languagesa statement is an instruction to be performed.

2.6 How A Perl Program Is Executed

Perl programs are distributed in source �les. From the instance you invoke the perl inter-
preter to executea script, a number of stepswere involved before the program is executed.

Preprocessing An optional preprocessingstagetransforms the source �le to the �nal form.
This tutorial does not cover source preprocessing. For details please consult the perl�lter
manpage.

Tokenizing The source �le is broken down into tokens. This processis called tokenization
(or lexical analysis). Whitespaces are removed. Token is the basic unit that makes up a
statement. By tokenizing the input parsing is becoming easierbecauseall further processing

16 Chapter 2 Getting Started

are carried out on tokens, independent of whitespace.

Parsing & Optimization (Compilation) Parsing involves checks to ensure the program
being executed conform to the language speci�cation and builds a parse tree internally
which describes the program in terms of microoperations internal to Perl (opcode). Some
optimizations to the parse treeare performed afterwards.

While in-depth understanding of any of these processesis not essential to practical Perl
programming, the compilation phase will be mentioned in some later chapters that I believe
it is a good idea to brie�y intr oduce the phasesinvolved beforehand.

GOOD PROGRAMMING PRACTICES

Comments (Part I)

Comments are meant for human reader to understand the source code without the
need of running the program once in your brain. This increasesboth the readability
and maintainability of your source code. Many programmers are lazy to insert
comments throughout the code. But it is very likely when you look at a piece of
code wr ote earlier you may not understand it anymore as it is very complicated
without any comments in it.

Therefore, you should include comments in appropriate places. Usually for a single
block of code performing one particular function we will place a comment brie�y
describing what this code block does. You may also want to place a comment on
a particular line if the meaning of the line is not immediately obvious. Of course,
don't deluge your source code with comments. For example, in the source code
of the `Hello World' program I placed a comment for the print statement. It is
super�uous, in fact, as the meaning of this statement is pretty obvious. But I
included it here becausethis is your �rst Perl function learnt. As you proceed,
more constructive comments and less super�uous comments will be found in the
examples.

As Perl programs have to be distributed in source code (although an experimental
tool exists that allows Perl programs to be distributed in standalone bytecode
format), I have seensome programmers deter people from reading the source code
by using some script to remove all the newlines and garble variable names in order
to make it nearly impossible to understand. But such practices actually violate the
principles of open sourcedevelopment, and I am in opposition to such practices.

2.7 Literals

All computer programs have to handle data. In every program there are certain kinds of data
that do not change with time. For example, consider a very much simpli�ed CGI script that
checks if the password input by the user matches the system. How would you implement
it? It seems the simplest method would be to have the correct password speci�ed in the
script, and after the user has entered the password and hit the “Submit” button, compare it
against the password input by the user. The standard password speci�ed in this script does

2.7 Literals 17

not changeduring the courseof execution of the script. This is an example of a literal . Other
terms that are also used are invariants and constants. In the previous Hello World example,
the text “Hello, World! nn” on Line 5 is also a literal (This piece of data cannot be changed
during the time you are running the program).

Literals can have a number of forms, just becausewe can have data of dif ferent forms. In Perl
we can roughly dif ferentiate numbers and strings.

2.7.1 Numbers

There are several classes of numbers: integers and decimals (known as �oating-point
numbers in computer literatur e).

In Perl, integers can be expressedin decimal (base10), hexadecimal (base16) or octal (base
8) notation. Octal numbers are preceded by a 0 (zero), e.g. 023 is equivalent to 1910 (the
subscript 10 denotes representation in base-10,i.e. decimal form); hexadecimal numbers are
precededby 0x (zero x), e.g. 0xfe is equivalent to 25410. For hexadecimal digits A - F, it does
not matter whether you specify them in lowercaseor uppercase.That is, 0xfe is the sameas
0xFE.

Integers cannot be delimited with commas or spaceslike 10,203,469or 20 300. However ,
Perl provides a nice workar ound as a substitute. An example is 4 976 297 305. This is just
a facility to make large numbers easier to read by programmers, and writing 4976297305is
entirely correct in Perl.

Decimals are those carrying decimal points. If the integral portion is 0, the integral portion
is optional, i.e. -0.6 or -.6 work equally �ne. Exponents (base10) can also be speci�ed by
appending the letter “e” and the exponent to the real number portion. e.g. 2e3 is equivalent
to 2 x 103 = 2000.

2.7.2 Strings

A string is a sequenceof charactersenclosed(delimited) by either double quotes (”) or single
quotes ('). They dif fer in variable interpolation and in the way escapecharactersare handled.
The text “Hello, World! nn” in the hello world example is a string literal, delimited by double
quotes.

We will defer variable interpolation until we come to variables. Escapesequencesexist in
many programming languages. Every escapesequencehas a function associated with it.
Escapesequencesare usually put inside double-quoted strings. Table 2.1 summarizes the
most important escapesequencesused in Perl.

Theseescapesequencesare used in double-quoted strings. Another situation where escape
sequenceshave to be used is for character escaping. What does that mean? Consider you
would like to use double quotes in a double-quoted string. For example you would like to
print this English statement instead of the “Hello World” phrase in Example 2.1:

Howdy says,”Give me$500”.

18 Chapter 2 Getting Started

Escape
Sequence Function

nn Newline
Startsa newline

nr Carriage Return
Returns to the starting point of the line

nt Tab
Analogous to striking the Tab key on your keyboard; How-
ever, using tab to make formatter output doesnot always gen-
erate the format expected.

nb Backspace
Analogous to the Backspacekey; erasesthe last character

na Bell
Createsa beepsound from the system buzzer (or sound card)

nxnn ASCII character using hexadecimal notation
Outputs the character which corresponds to the speci�ed
ASCII index (eachn is a hexadecimal digit)

n0nn ASCII character using octal notation
Outputs the character which corresponds to the speci�ed
ASCII index (eachn is an octal digit)

ncX Control Character
For example, ncC is equivalent to pressingCtrl-C on your key-
board

nu Next letter uppercase
The letter immediately following nu is converted to uppercase.
For example, nuemail is equivalent to Email

nl Next letter lowercase
The letter immediately following nl is converted to lowercase.
For example, nlEmail is equivalent to email

nU All subsequent letters uppercase
All the letters immediately following nU are converted to up-
percaseuntil nE is reached

nL All subsequent letters lowercase
All the letters immediately following nL are converted to low-
ercaseuntil nE is reached

nQ Disables pattern matching until nE
This would be covered in the “Regular Expressions” chapter.

nE Ends nU, nL, nQ
Terminates the effect of nU, nL or nQ.

Table2.1: Themostcommonlyusedescapecharactersin Perl

2.8 Introduction to Data Structures 19

That is, you try to print this phrase by:

print "Howdy says, "Give me $500".";

If you executethis program, you will get into trouble, because” is used to mark the beginning
and the end of the string literal itself. Perl locates the end of the string by searching forwar d
until the second double quote is found. If the literal contains double quotes itself, Perl will
not know where the string literal terminates. In the example above, Perl will think the string
ends after “Howdy says, ”. Also, after you have learned variable interpolation in the next
chapter you will realize that the symbol $ is used for variable substitution. You have to
tell Perl explicitly you would like to use the symbol as is instead of performing variable
substitution. To get around this problem, just place the n character before the two symbols
concerned, and this is what we mean to “escape” a character. So, the correct way to print
this statement using double quotes is:

print "Howdy says, \"Give me \$500\".";

However , wise Perl programmers will not do this, as the backslashes make the whole
expression ugly to look at. If we chooseto use single quotes instead, we don't even have to
escapeanything:

print 'Howdy says, "Give me $500".';

Single-quoted string does not support variable substitution, so the $ need not be escaped.
Also, becausethe symbol ” does not carry any signi�cance in the string, it does not need to
be escapedas well. There are only two characters that need to be escapedin single-quoted
strings, namely ' and n. For double-quoted strings, a number of charactershave to beescaped,
and it would becomeclear asyou work through the chapters in this tutorial.

Empty strings are denoted by “” or `', that is, two quotes with nothing in between.

2.8 Introduction to Data Structures

Every programming language has certain kinds of data structure builtin. A data structure
can be thought of asa virtual container residing in the memory in which data is stored. Each
data structure is associatedwith a data type specifying the type of data permitted in the data
structure. A data type is important in programming languages becausedata of dif ferent
types are likely to be treated dif ferently. For example, numbers are sorted by numerical
value; while strings are sorted in alphabetical order. Many programming languages, like
C++, Javaand Visual Basic,have a large number of data types, e.g. integer, double, string,
boolean ... just to name a few. They require declaration of a data type when a data structure
is created, and this data type cannot be changed afterwards. There are both advantages and
disadvantages to this approach. As dif ferent data types occupy dif ferent amount of storagein
the memory, the underlying machine actually requiressome type information to convert the
high-level programming constructs into assembly instructions in the compilation stage.Also,
by having the data type �xed there are lessambiguities as to how the data is to be handled.
The most obvious disadvantage, of course, is that explicit data conversion is necessary in

20 Chapter 2 Getting Started

such programming languages.

As of Perl 5, Perl of�cially dif ferentiates only two types of data: scalar data and list data.
Mor eover, Perl does not enforce strict type-checking, instead, it is loosely-typed. This may
changein Perl 6, but you will not seeit in the near futur e.

Scalar data representsa piece of data. All literals are scalar data. Variables are also scalar
data. As the underlying machine requires explicit declaration of data types, Perl needs to
convert the data between dif ferent data types as needed in the underlying implementation,
while a Perl programmer can be oblivious to such data conversion. In the next chapter you
would seeexample code in practice.

Another type is list data. List data is an aggregation of scalardata. Arrays and hashesbelong
to this type. While you may not have a clear pictur e of how list data look like at this point,
you would have a clear idea after reading the next chapter.

There are threebasic data structuresprovided with Perl, namely scalar variables, arrays and
associative arrays (hashes). I am going to give an intr oduction to the three types of data
structures at this point, and in the next chapter you would seethe functions and operations
associatedwith thesedata structures.

A scalar variable , or simply a variable, is a named entity representing a pieceof scalardata of
which the content can be modi�ed throughout its lifetime. What does this mean? A variable
is conceptually like a virtual basket, and only one object is allowed in it at any one time. If
at some time you would like to place something else in the basket, you have to replace the
existing object with a new one, and the existing object is discarded. In Perl a variable can
store a piece of string or number (or a reference, which we haven't come to yet). Unlike
other programming languages,Perl gives you the �exibility that at one time you may store a
number and at other times you may store a string in the samevariable, however, it is a good
practice to always store data of a particular type at any time in the same variable to avoid
confusion.

Becausethe value of a variable can be modi�ed at any point, and there can be many variables
that are concurrently in use at a time, we have to specify which one to address. Therefore,
variables are named, and on the other hand literals are unnamed. This name is known as an
identi�er . By default, all variables are global , that is, after the variable is �rst used in the
script, it can be referred to at any time, anywhere until the script terminates. However , it is a
good practice not to useglobal variables excessively. Instead, most variables are actually used
for temporary storage only and can be restricted to be valid for a limited time. This concerns
the lifetime of a variable, and in turn the idea of scope. This would be discussedin Chapter 5.

Sometimes we are dealing with a set of related data. Instead of storing them separately in
variables, we may store them as list data, which is a collection of scalar data sharing a single
identi�er (name). Arrays and hashesare two types of list data.

An array is a named entity representing a list of scalar data, with each item assigned an
index . In an array, the integral index (or subscript) uniquely identi�es eachitem in the array.
The �rst item has index 0, the one afterwards has index 1, and so on. Each item in an array
is a piece of scalar data, and, therefore, (in Perl only) numbers as well as strings may coexist
in the array. An array can be empty, that is, containing no elements (called a null array). A
representation of an example array containing some data is shown below, the column on the

2.8 Introduction to Data Structures 21

left is the index and the data is on the right:

Index Data
0 “Apple”
1 36
2 “Hello, World”
3 “School”

Table2.2: Contentsof asamplearray in Perl

A hash is a special data structure. It is similar to an array except that the index is not an
integer, so the term “index” is not customarily used for hashes. Instead, a string is used
for indexing, and is known as a key. The key is conceptually like a tag which is attached
to the corresponding value. The key and the value forms a pair (key-value pair). Like an
array, the keys in a hash have to be distinct to distinguish a key-value pair from another.
Recall that ordering in arrays is determined by the indices of the items (becausewe can say
the �rst item is the one which has subscript 0, the second item which has subscript 1, and
so on). However , in a hash no such ordering is present. You will see in the next chapter
that we may “sort” the hashesby keys or by values for presentation purposes. However ,
this does not physically reorder the keys or the values in the hash. It merely rearranges
the key-value pairs for screenoutput or to be passedto another processfor further processing.

Hashes (or hash tables in Computer Scienceparlance) are especially useful in dictionary
programs. Assume that the program works as follows. It requires a user to enter an English
wor d into the text entry box that is to be searched in the dictionary database. Inside the
dictionary is actually a long list of key-value pairs, where the key is the wor d entry and
the value is an ID that the database uses internally to retrieve the corresponding record
(containing the explanations, pronunciation etc.). The term entered by the user is queried in
the dictionary . If the entry matches any key, the corresponding ID is obtained and is used to
retrieve the record for the wor d speci�ed; Otherwise, the term is not found and the program
returns an error. Hash table is an ef�cient data structure for data storage. A well-implemented
hash table requires only several comparisons to retrieve the value if the key is in the hash.
Mor e surprisingly , even if a given key does not exist in a hash, it is NOT necessaryto search
through all the keys in the hash before returning the key-not-found error. The reason for
this concerns the principle behind hash tables and may be found in any textbooks on data
structuresand algorithms.

Severalentries of a possible hash table for the above dictionary program is shown below:

Key Value
“Boy” 342

“Apple” 165
“Kite” 1053

... ...

Table2.3: Contentsof asamplehashin Perl

In the next chapter, you will learn how to manipulate the data structuresdiscussed. You will
know how to construct an array, or remove items from it, etc.

22 Chapter 2 Getting Started

Chapter 3

Manipulation of Data Structures

3.1 Scalar Variables

I have qualitatively described how a scalar variable looks like in the previous chapter. Now
we are going to look at how you can use it in your program.

You refer to avariable by appending the identi�er of the variable to the symbol $. For example,
a variable named LuckyNumber is written as$LuckyNumber .

3.1.1 Assignment

In Perl, it is not required to declare a variable before it is being used. However , before you
ever use a variable in your program you should give it a default value. To assign a value to
the variable we use the assignment operator (=). For example, say my lucky number is 18,so
I can initialize the variable as follows:

$LuckyNumber = 18;

This statement is interpr eted as follows: the value on the right hand side of the assign-
ment operator is assigned to the data structure on the left. In this case,18 is assigned to
$LuckyNumber .

However , the right hand side of the assignment operator is not con�ned to a literal only.
The right hand side of an assignment operator is actually treated as an expression. An
expression consists of a sequence of operations which evaluate to a value by means of
operators. For example, (6 + 5) * 2 is an expressionconsisting of two operations (* denotes
multiplication). Evaluating an expression means to deduce the result of the expression, by
evaluating each operand, and applying the operators in a certain order (subject to operator
precedenceand associativity) to transform the expression into the value. The expression in
this example evaluates to the scalarvalue 22. You will learn more about operators in the next
chapter. Therefore, if we have another variable $Numwhich has the value of 8, executing the
statement $LuckyNumber = $Numcauses$Numto be evaluated on the right hand side, and thus
its value, that is 8, is assignedto $LuckyNumber . Sothis is essentially $LuckyNumber = 8.

Cascadedassignment is also possible, e.g. $a = $b = 8; First, 8 is assigned to $b, and then
the value of $b is assignedto $a. The net effect is that the two variables both have the value 8.

23

24 Chapter 3 Manipulation of Data Structures

In some other programming languages, to supply a default value before you �rst use a vari-
able (initialization) is very important. For C/C++, you need to declare a variable before it
is used. This reservesmemory spacefor this variable. However , it is not required in C/C++
that a value needs to be assigned during variable declaration. A variable in this state is de-
scribed as unde�ned . Getting a value of an unde�ned variable posesa very subtle source of
error (somegarbagevalues are returned — that is, arbitrary value without any meaning) that
yields surprising results, and is very dif �cult to debug. In Perl, if you use a variable that is
not initialized (for example, printing its value), the value undef (unde�ned) is returned. This
is a special value that gives dif ferent values in dif ferent contexts. Contexts will be intr oduced
in the last section of this chapter and, simply put, it is 0 in numeric context (i.e. if a number is
requested),an empty string in string context (i.e. a string is requested)or FALSE in “Boolean”
context (i.e. when either TRUE or FALSE is requested). However , if you have speci�ed the
-w switch, the interpr eter should have warned you on using uninitialized variables. The use
of uninitialized variables is not a good practice, and you have to ensure that all variables are
given a value before being used.

As already discussed, you can store scalar data of dif ferent types in a variable during the
lifetime of the script, so you can now assign the string literal “eight” to $LuckyNumber . Perl
will just happily accept it. Of course, you should try to avoid it, asdescribed in the previous
chapter.

NOTES

You may seethe terms lvalue and rvalue in some other books or documentation.
An lvalue refers to any valid entities that can be placed on the left hand side of the
assignment operator, while an rvalue refers to any valid entities that can be placed
on the right hand side of the assignment operator. A list, an array or scalar variable
can be an lvalue. Literals (scalar in sense)are not lvalues. Dif ferent programming
languageshave dif ferent lvalues and rvalues.

For example, theseare lvalues (of course they can be rvalues aswell): $var

($var, @lst)

Theseare not:

46
("mystuff", "apple")

3.1.2 Nomenclature

I have forgotten to talk about how to choosean identi�er for a variable (and arrays or hashes
alike). An identi�er should start with a letter (A-Z, a-z) or underscore (). Subsequentletters
may be alphanumeric characters(A-Z, a-z, 0-9)or an underscore (). No spacesare allowed in
the middle of an identi�er . There is one more important point. Perl is at all timescase-sensitive.
That means it dif ferentiates lowercaseand uppercasecharacters. The print statement you
have seenin the Hello World example cannot be replaced by Print, PRINT or anything else.
Similarly , $var and $Var are two dif ferent variables. The last point to note is identi�ers cannot
be longer than 255 characters (long identi�ers are time-consuming to type and dif �cult to

3.1 Scalar Variables 25

interpr et — pleaseavoid them).

NOTES

If you read on, you will discover that Perl has many builtin prede�ned variables
which do not follow such a nomenclature scheme.For example, $1 - $9 are reserved
for backreferencing in pattern matching (seethe chapter “Regular Expressions”), or
other more awkwar d looking variables like $, , $" , $... Just to name a few. Because
devoting a whole chapter to intr oduce them would be too boring, I will intr oduce
them as needed throughout the text. Alternatively , the perlvar manpage contains
descriptions to all Perl prede�ned variables.

Another point to note is that the name of a variable, array or hash is formed by a symbol ($
for variable) and the identi�er . Therefore, $Var , @Var and %Var can coexist. Although they
have the sameidenti�er , they are still unique namesbecausethe symbols are dif ferent. Also,
you may use “r eserved wor ds” for the identi�er , e.g. $print becausethe symbol before the
identi�er tells Perl that this is a variable. There is thus no ambiguities.

3.1.3 Variable Substitution

It's time to talk about variable substitution . I have told you that single-quoted strings do
not allow variable substitution, while double-quoted strings can. Variable substitution means
that referencesto variables in a double-quoted string will be substituted by their values at the
time the statement is evaluated. Consider this example:

EXAMPLE 3.1

1 #! / usr/b i n/ per l - w
2 # Exampl e 3. 1 - A Cel si us- >Fahr enhei t Conver t er
3
4 # Pr i nt t he pr ompt
5 pr i nt " \n Pl ease ent er a Cel si us degr ee > " ;
6 # Chop of f t he t r ai l i ng newl i ne char act er
7 chomp($cel = <STDI N>);
8
9 $f ah = ($cel * 1. 8) + 32;

10
11 # pr i nt val ue usi ng var i abl e i nt er pol at i on
12 pr i nt " The Fahr enhei t equi val ent of $cel degr ees Cel si us i s $f ah\ n" ;

Line 7 looks awkwar d, but here we do two things, acceptuser input and removes the trailing
newline character. You don't have to concern much about thesetwo things here,aswe would
describe them in more detail later on.

Line 9 calculates the Fahrenheit temperature, and when execution of the script reachesline
12, it seesthe two variables $cel and $fah . Then Perl replacesthem with the values the two
variables carry at that time, and the resulting string is output to the screen.

26 Chapter 3 Manipulation of Data Structures

There is one problem arising from variable substitution. What if we have some wor ds im-
mediately following the variable, without even a space? Perl has provided a nice facility to
get around this situation. You may put a pair of curly brackets around the identi�er name to
separateit from the aurrounding text, e.g.

print "${Num}th Edition";

3.1.4 substr() — Extraction of Substrings

Frequently you have to extract a sequence of characters from a string. In other wor ds,
you extract a substring from it. Perl provides you with the substr() function to extract a
substring, provided that you already know in advance where to start extracting it.

The syntax of the substr() function is as follows:

substr STRING, OFFSET
substr STRING, OFFSET, LENGTH
substr STRING, OFFSET, LENGTH, REPLACEMENT

As you can see,substr() can take 2-4 parameters depending on your needs. A parameter,
or an argument , serves to provide a function with a piece of data that is necessaryfor its
operation. STRING is the string from which extraction is performed. OFFSETis a zero-based
offset which indicates the position from which to start extraction. The �rst character of any
string has an OFFSET0, and 1 for the second character etc. In Perl, OFFSETcan be negative,
which counts from the end. For example, the last character of the string can be represented
by the OFFSET-1. LENGTHis the number of charactersto extract. If it is not speci�ed, it extracts
till the end of the string. The extracted substring is returned upon evaluation. Here are some
examples:

$string = "This is test.";
print substr($string, 5); # is test.
print substr($string, 5, 2); # is

If REPLACEMENTis speci�ed, the substring is replaced by the string obtained by evaluating
REPLACEMENT, and the substring being replaced is returned. Alternatively , you may put
substr() on the left hand side of an assignment operator, and REPLACEMENTon the right. Here
is an example which replacesa substring of length 0 with the replacementstring “not a ”, that
implies inserting it at position 8:

substr($string, 8, 0, "not a "); ## First method
substr($string, 8, 0) = "not a "; ## Second method
print $string; # This is not a test.

3.1.5 length() — Length of String

You can �nd out the length of a string by using the length() function. The only parameter
for the length() function is the string itself. It returns the number of charactersin the string.

3.2 Lists and Arrays 27

Scalarvariable is a very simple data structure. In the next section we are going to deal with
lists, arrays and hashesthat are a lot more interesting to play with.

3.2 Lists and Arrays

Arrays are named entities, lists are not. The relationship between a list and an array is very
much similar to that between a literal and a scalar variable. A list is merely an ordered set of
elements. An array is just like a list but with a name thus can be referencedthrough an array
variable. Studying the behaviour of lists allow us to progressnaturally into arrays and hashes
in subsequentsections.

3.2.1 Creating an Array

Eachitem in the list is called an element. To createa list, simply delimit (separate)the elements
with commas(,) and surround the list with a pair of parentheses.For example a list containing
the namesof somecolours can be written as

("red", "orange", "green", "blue")

An array can be created by assigning a list to an array variable. An array variable starts with
the symbol @(compare with the caseof $ for scalar variables). Therefore, an array can be set
up containing the list above,e.g.

@colors = ("red", "orange", "green", "blue");

Alternatively , you may use the equivalent method of per-item assignment (to be discussed
shortly):

$colors[0] = "red";
$colors[1] = "orange";
$colors[2] = "green";
$colors[3] = "blue";

This array contains 4 elements. A null array is simply (). Lists can be nested, that is, a list
may contain other lists or array variables asan element. However , the embedded lists will be
expanded and merged with the container list. Any null lists or null arrays are removed. For
example, if

@unix = ("FreeBSD", "Linux");
@os = ("MacOS", ("Windows NT", "Windows ME"), @unix);

@osis expanded into

@os = (" MacOS" , " Wi ndows NT" , " Wi ndows ME" , " Fr eeBSD" , " Li nux");

In the following example, @result will becomea null array. Note that null lists are ignored.

28 Chapter 3 Manipulation of Data Structures

@nullarray = ();
@result = ((), @nullarray);

A useful operator that worths mentioning here is the range operator (..). If you would like to
generatean array of consecutive integers this operator may come in handy, asyou no longer
have to use a loop to do it. Example:

@hundrednums = (101 .. 200);

However , the numbers must be in ascending order. If you would like to have an array of
consecutive integers in descending order, you may construct it in ascending order using the
range operator, and then reversethe position of the items using the reverse() function:

@hundrednums = reverse (101 .. 200);

3.2.2 Adding Elements

Weknow from the previous section that if we placean array variable or a sublist asan element
of a list, the array variable or the sublist would be expanded and merged with the parent list,
and in this operation the identity of the original array variables or sublists are lost. That
means,you can no longer tell from the resulting list if a particular element originates from a
sublist or an array variable. Therefore, it is natural to conclude that two arrays can be merged
together by this operation:

@CombinedArray = (@Array1, @Array2);

The resulting array contains all the elements in @Array1 , followed by that of @Array2 . To
append a scalarelement to the end of an array, you can write, for example,

@MyArray = (@MyArray, $NewElement);

We can also append a list of scalar data to the end of an array by using the push() function.
The syntax of the push() function is

push ARRAY, LIST;

where ARRAY is the array to which the list data are to be appended. LIST is a list specifying
the elements to be appended to ARRAY. The mechanism of the push function is not much
dif ferent from the interpolation of lists above,and I am more accustomedto the previous one
than using the push function, becauseit appearsmore intuitive to look at.

push is a function. A function returns some values (not necessaryscalar, can be list data as
well for certain functions) after the operation is �nished. For this function, the number of
elementsafter element addition is returned. Consider the example below:

$NumElements = push(@MyArray, @list);

3.2 Lists and Arrays 29

Note that I have added the parenthesesaround @MyArray and @list , which are the param-
eters of the function (also known as arguments). Parameters are additional information a
function needsto perform its job. The parentheseshere are not actually necessary, but I added
them here to make it obvious the parameters of the function. The return value is assigned
to $NumElements . In the next chapter, you will learn operator precedence,which describesin
detail when and where you should add parentheses. For the time being, stick to the way I
have beendoing and it would be �ne.

On the other hand, this operation inserts the element at the beginning of the array:

@MyArray = ($NewElement, @MyArray);

unshift is a function that inserts a list at the beginning of an array, and returns the number of
elementsafter the operation. The syntax is

unshift ARRAY, LIST;

where ARRAY is the array to which elementsare added, and LIST is the list that is inserted at
the beginning of ARRAY. Consider the following example:

EXAMPLE 3.2 Demonstrating unshift()

1 #! / usr/b i n/ per l - w
2
3 @al pha1 = ("a " , " b" , "c ");
4 @al pha2 = ("d " , " e" , "f ");
5
6 unshi f t @al pha2, @al pha1;
7 $, = " " ; # Pr i nt s a space i n bet ween el ement s
8 pr i nt @al pha2;

Again, disregard the line numbers that are for illustration only. Note that the ordering of the
items of @alpha1 is preservedin @alpha2 . What is worth noting is on line 7. We assigna space
to an odd-looking variable, but what's that? This is an example of Perl prede�ned variables,
and $, is known as the Output Field Separator. Without line 7, you would most likely get
an output like “abcdef ” becauseby default this variable is an empty string. The output �eld
separator is the string that is to be printed between two elements in a print operation. You
may assignany valid string literals to this variable. I am putting a spacein between elements
to make them easierto read.

3.2.3 Getting the number of Elements in an Array

There are two ways in which you could obtain the number of elementsstored in an array.

The �rst method is to employ the concept of context. By evaluating an array in scalarcontext,
we canobtain the number of elementsin an array. You may not understand what this is for the
time being, but we will return to this example when we come to contexts later in this chapter.
In the following example, the number of elements in @colours is asssignedto $numElements :

30 Chapter 3 Manipulation of Data Structures

$numElements = @colours;

The secondmethod is a little bit clumsy to explain. In Perl, you can �nd out the subscript of
the last item of an array by replacing the symbol @with $#. For example, the subscript of the
last item in @Array is given by $#Array .

For historical reasons,Perl provides a facility for users to specify the subscript of the �rst
element of an array. This is speci�ed by assigning an integer to the prede�ned variable $[.
This is 0 by default, and that's why I said subscripts start from 0. However , some people
may be accustomed to using 1 as the starting index (especially those who have used some
“antique” programming languages). This value is not necessarily 0 or 1. You may set other
values aswell. However , you cannot assignvalues to this variable more than once. Although
Perl provides this facility , you are advised not to use it becauseof potential confusions that
may arise, especially if your project consistsof a number of �les.

With both the start index and the index of the last element, we canget the number of elements
by using the formula:

Number of elements= Last Index - Starting Index + 1
= $#Array - $[+ 1

As the start index is 0 by default (that is, if you don't specify otherwise), you may assumethat
the number of elementsof @Array is given by

$#Array + 1

3.2.4 Accessing Elements in an Array

After we have added items to an array or list, we can accessany of its elements by using the
subscript operator ([]). For example, if we would like to retrieve the thir d element (remember
that subscripts count from 0) from @colours and return the value to $col3 , we can write

$col3 = $colours[2];

Note that the symbol is $ instead of @on the right hand side of the assignment operator. In
Perl, becausethe value returned (i.e. an element of an array or a list) is a scalar value, the
symbol $ is used. Though looking awkwar d, you can de�nitely use the subscript operator on
a list, like this:

$col3 = ("red", "orange", "green", "blue")[2];

Obviously, using the subscript operator in this way is not really useful.

What about specifying a negative subscript? Negative subscripts count backwards, from the
last element of the array. The last element hasthe subscript -1,and the next-to-last element has
the subscript -2. Therefore, the �rst element of the array @array has the subscript -@colours
(due to scalar context). Normally , negative subscripts are used as a convenience method to
retrieve the last element of an array. At least, @array[-1] is de�nitely easier to understand
than @array[$#array] .

3.2 Lists and Arrays 31

An array slice is a subsetof elements from all the elements in an array. The subscript operator
is not con�ned to one subscript only. You may specify a list of subscripts using the comma
operator (,) and the range operator (..). You use the range operator to specify subscripts (must
be integral) in a given range, and the comma operator to specify eachsubscript individually .
Nothing will stop you from using both operators together, as in the following example:

EXAMPLE 3.3 Arra y Slices

1 #! / usr/b i n/ per l - w
2
3 @al pha = ('a ' . . ' z');
4 @sl i ce = @al pha[4, 10 . . 15] ;
5
6 $, = " " ;
7 pr i nt @sl i ce;

In this example, the array slice @slice contains the 5th element, and 6 elements starting from
the 11th element of @alpha. The resulting output is thus “e k l m n o p”. Note that becausethe
array slice contains a list of values, the symbol of @alpha is @on line 4.

We can,of course,modify the value of any element in an array. To do this, just assigna scalar
value to the corresponding array element. Similar is the casefor slice assignment, in which a
list of scalardata is assignedasa list. For example:

$colours[2] = "violet";

The followings are identical
@colours[2,4] = ("violet", "blue");
$colours[2] = "violet"; $colours[4] = "blue";
@colours[4,2] = ("blue", "violet");

If you specify a subscript that is larger than $#array , the size of the array shall grow in order
to accommodatethe newly added element. In this example, because@numscontains originally
3 elements,assigning a value to the 5th element leavesa “gap” at the 4th element, not assigned
any values. The value of this element is undef .

EXAMPLE 3.4 Arra y Expansion

1 #! / usr/b i n/ per l - w
2
3 @nums = (3, 4, 5) ;
4 $nums[4] = 7; # (3, 4, 5, undef , 7) expect ed
5
6 $, = " \n " ;
7 pr i nt @nums;

To show that there is an empty gap at the 4th element, the output list separator is set to nn.
Soyou would seea line like “Use of uninitialized value at eg0304.plline 6” between 5 and 7
in the output if warnings are enabled. That's becauseretrieving the value of an uninitialized
value produces this Perl warning.

32 Chapter 3 Manipulation of Data Structures

3.2.5 Removing Elements

We can use the pop function to remove the last element of an array. It also returns the value of
the item being removed. Syntax:

pop ARRAY;

In this example, the last item of @MyArray is removed and its value is assignedto $retval :

$retval = pop(@MyArray);

On the other hand, the shift function removesthe �rst element of the array, so that the sizeof
the array is reduced by 1 and the element immediately after the item being removed becomes
the �rst element of the array. It also returns the value of the item being removed. Syntax:

shift ARRAY;

If ARRAY is empty, undef is returned.

3.2.6 splice() : the Versatile Function

There is a generalized function for adding and removing elements from an array. The splice
function is so general that it can do what push , pop, shift and unshift does. The syntax is:

splice ARRAY, OFFSET [, LENGTH [, LIST]] ;

In this tutorial, the parts in slanted font denote optional parameters. Theseparameters are
optional in the sensethat in some situations they are optional; but not in other situations. I
use [] to label that a parameter is optional. Note that [LIST] is placed within another optional
parameter LENGTH. This means that if you have to specify the parameter LIST, you must
also specify LENGTH; but not vice versa. If you specify the parameter LENGTH, you may or
may not supply the parameter LIST.

In general, this function removes LENGTH elements starting from the element of subscript
OFFSETof ARRAY, and inserts LIST at OFFSETif any. Simply put, the list @ARRAY[OFFSET..
OFFSET + LENGTH - 1] is replaced by LIST. The syntax shows that this function takes three
forms, and I am going to describe them one by one.

splice ARRAY, OFFSET, LENGTH, LIST

This performs exactly the action above. In the example below, an array containing the 26
lowercasealphabets was built, and 5 elementsstarting from the 5th element (i.e. the letter “e”)
is converted to uppercase.This is done on line 2. First @alpha[4 .. 8] contains the 5 letters
that are to be converted to uppercase(remember that subscripts start at 0). The map function
calls the uc function (uppercase)for every element in this list, thus converting ("e", "f",
"g", "h", "i") to ("E", "F", "G", "H", "I") . The splice function, therefore, replacesthe
lowercaselist with the uppercaseone. uc and mapwould be covered later.

3.2 Lists and Arrays 33

EXAMPLE 3.5 splice

1 #! / usr/b i n/ per l - w
2 # Exampl e 3. 5 - spl i ce
3
4 @al pha = ('a ' . . ' z');
5 spl i ce @al pha, 4, 5, map(uc , @al pha[4 . . 8]);
6 $, = ' ' ;
7 pr i nt @al pha;

What you will seeon the screenshould be all lowercasealphabets exceptE, F, G, H and I.

splice ARRAY, OFFSET, LENGTH

If you don't specify the replacement list, the action is merely removing LENGTH elements
from ARRAY starting from subscript OFFSET.

splice ARRAY, OFFSET

If you don't specify the LENGTH, Perl assumesthat all elements starting from OFFSETare
removed. OFFSETis just a subscript and can be negative as well. A negative value speci�es
the OFFSETis counted from the end of the array as mentioned earlier, e.g. -1 means the
last item, -2 means the second last item etc. Therefore, pop @MyArray can be equivalently
accomplished by splice @MyArray, -1 .

The following table summarizes how you canusesplice in placeof other functions discussed
earlier (still remember that in Perl you always have a number of ways to do the sametask?).
You may �nd the equivalent method for push() strange, but after you have learnt the whole
theory behind contexts you would understand it. We would use this illustration again when
we come to contexts.

Function Equivalent Method
push(@Array, $x, $y) splice(@Array, @Array, 0, $x, $y)
pop(@Array) splice(@Array, -1)
shift(@Array) splice(@Array, 0, 1)
unshift(@Array, @x) splice(@Array, 0, 0, @x)
$Array[$x] = $y splice(@Array, $x, 1, $y)

Table3.1: Relationshipof somearray functionswith splice()

3.2.7 Miscellaneous List-Related Functions

There are a number of useful functions that allow you to manipulate list data in Perl.

join STRING, LIST

The join() function concatenatesa list of scalars into a single string. It takes a STRING as its
�rst argument which is the separator to be put in between the list elementsLIST . For example,

34 Chapter 3 Manipulation of Data Structures

join '+', 'apple', ('orange', 'banana')

evaluates to

apple+orange+banana

reverse LIST

In a list context, the reverse() function returns a list whose elements are identical to that of
LIST except the order is reversed. For example:

print join " ", reverse 'a'..'e'; # e d c b a

The map() function takes on one of the following two forms:

map BLOCK LIST
map EXPR, LIST

The map() function iterates over every item in the LIST , sets $ to the item concerned and
executesBLOCKor EXPRon each iteration. The return value is a list consisting of the result of
evaluation of all iterations. BLOCKis a code block enclosing a sequenceof statements to be
executed. EXPRcan be any expression.Consider this example:

@names = ('ALICE', 'tOm', 'JaSON', 'peter');
print join(', ', map { ucfirst(lc($_)); } @names), "\n";

The output is

Alice, Tom, Jason, Peter

This example prints out eachof the names in @namesso that they all start with capital letters
while the other characters are in lowercase. This is accomplished by �rst converting all
characters to lowercase by the lc() function, and the �rst letter is capitalized using the
ucfirst() function. This processis performed for eachname in @names. The sameexpression
may be rewritten as

@names = ('ALICE', 'tOm', 'JaSON', 'peter');
print join(', ', map (ucfirst(lc($_)), @names)), "\n";

The �rst form of map() is generally preferred to the secondone becauseit is more �exible.

The sort() function can be used to sort a list. By default, the sort() function sorts lex-
icographically. The items are ordered by comparing the items stringwise (using the cmp
operator, the speci�cs of which will be intr oduced in the next chapter). This comparison is
case-sensitive,becauseit is based on the ASCII values of each character. The sorted list is
returned by the sort() function, while the original list remains intact.

3.2 Lists and Arrays 35

sort ('bear', 'Post', 'ant'); # ('Post', 'ant', 'bear')

Note that while comparing stringwise, capital letters are considered “smaller ” than lowercase
letters.

To make the sort routine generic and allow sorting in any arbitary order, you may override
the default sort criteria with your own rules. The method is to insert a code block before the
list, similar to the casefor map() . The value resulted from evaluation of the block determines
how the items are sorted.

The principle of constructing the contents of the block is too advanced at this stage. The rest
of the details can be found in the next chapter. In the following I list several most commonly
used sort criteria that you are likely to �nd useful:

sort { $a <=> $b } @list; # ascending numerical order
sort { $b <=> $a } @list; # descending numerical order
sort { $a cmp $b } @list; # ascending lexicographical order (default)
sort { $b cmp $a } @list; # descending lexicographical order

case-insensitive ascending lexicographical order
sort { lc($a) cmp lc($b) } @list; # or use uc()

Apart from an array, you may use the sort() function together with the keys and values
function to specify how to order the hash items. For example,

%array = (
'3' => 'apple',
'11' => 'orange',
'5' => 'banana',

);
@key = sort { $a <=> $b } keys %array; # ('3', '5', '11')
@value = sort { $a cmp $b } values %array; # ('apple', 'banana', 'orange')

3.2.8 Check for Existence of Elements in an Array (Avoid!)

Many new programmers, and programmers who have programmed in other languages tend
to use arrays so extensively that are sometimes inappr opriate from performance considera-
tions. One classical problem is to deduce if a particular piece of scalar data matches any of
the elementsstored in an array (in alternative terminology , check for a hit or a miss). In some
languages like BASIC where a hash is not a builtin type, there is still little excuseto solve this
problem by searching an array, although you can still implement a hash yourself (For those
who are interested in implementing a hash themselves,pleaseread Appendix I).

In general, you can check if a certain element exists in an array by linear search. That is,
you search from the �rst element up to the end of the array. In the following code snippet,
a random list containing 100 entries is generated randomly and you can enter a number to
be searched. The program then searches for the number. When the search ends, it returns
whether it is found, and how many elements the program has searched.

EXAMPLE 3.6 Linear Search of an Arra y

36 Chapter 3 Manipulation of Data Structures

1 #! / usr/b i n/ per l - w
2
3 # Li near sear ch of an ar r ay
4
5 # Not e t hat i f you l at er on want t o sear ch f or somet hi ng f r om a
6 # l i st of val ues , you shoul dn' t have used an ar r ay i n t he f i r st
7 # pl ace.
8
9 # Gener at i ng 100 i nt eger s

10 $NUM = 100;
11 $MAXI NT = 5000; # 1 + t he maxi mum i nt eger gener at ed
12
13 sr and(); # i ni t i al i ze t he r andomi ze seed
14
15 pr i nt " Number s Gener at ed: \ n(" ;
16 f or $i (1 . . $NUM) {
17 push @ar r ay, spr i nt f (" %d" , r and(1) * $MAXI NT) ;
18 pr i nt $ar r ay [$i - 1] ;
19 pr i nt " , " unl ess ($i == $NUM) ;
20 }
21 pr i nt ")\n \n " ;
22
23 pr i nt " Pl ease ent er t he number t o sear ch f or >> " ;
24 chomp($t oSear ch = <STDI N>) ;
25
26 # Li near sear ch her e
27 $count er = 0; $hi t = 0;
28 f or each $num (@ar r ay) {
29 $count er ++;
30 i f ($num == $t oSear ch) {
31 pr i nt " \ "$ t oSear ch\ " f ound at subscr i pt " , $count er - 1, " \n " ;
32 $hi t = 1;
33 l ast ;
34 }
35 }
36 i f ($hi t == 0) { pr i nt " \ "$ t oSear ch\ " not f ound i n ar r ay. \n " ; }
37 pr i nt " Number of compar i sons : $count er / " , scal ar (@ar r ay) , " \n " ;

The code itself is not very important here. In fact, many new constructs used in this program
have not been discussed yet. The intent is for you to run the program instead of reading the
source code (but you may do it). Try to look at the list of values printed, and try to enter a
number that is not in the array, a number that appears early in the list, and a number that
appears around the end of the list. A fraction is printed on the screen. The one on the left is
the number of comparisons performed, while the one on the right is the number of elements
in the array (which should be 100 in this example). You may also want to increase$NUMto
increasethe number of integers generated. Of course, in this caseyou will need to increase
$MAXINT accordingly to minimize the chanceof duplication of values.

Note that it is possible to have duplicate values in the array owing to the random nature
of the random number generator. In this program, the �rst occurrence(i.e. with the lowest
subscript) will be returned.

3.2 Lists and Arrays 37

An alternative scheme is to use Binary Search, a rather classical topic in elementary com-
puter sciencetexts on algorithms. By using binary search, the whole set of values needn't be
searched in the worst case.In the worst caseonly log2n comparisons are required. However ,
there is an important requirement — the list needs to be already sorted. If not, sorting needs
to be performed �rst. Here is the above example rewritten that employs the binary search
algorithm:

EXAMPLE 3.7 Binar y Search of an Arra y

1 #! / usr/b i n/ per l - w
2
3 # Bi nar y sear ch of an ar r ay
4
5 # Not e t hat i f you l at er on want t o sear ch f or somet hi ng f r om a
6 # l i st of val ues , you shoul dn' t have used an ar r ay i n t he f i r st
7 # pl ace.
8
9 # Gener at i ng 100 i nt eger s

10 $NUM = 100;
11 $MAXI NT = 5000; # 1 + t he maxi mum i nt eger gener at ed
12
13 sr and(); # i ni t i al i ze t he r andomi ze seed
14
15 pr i nt " Number s Gener at ed: \ n(" ;
16 f or $i (1 . . $NUM) {
17 push @ar r ay, spr i nt f (" %d" , r and(1) * $MAXI NT) ;
18 pr i nt $ar r ay [$i - 1] ;
19 pr i nt " , " unl ess ($i == $NUM) ;
20 }
21 pr i nt ")\n \n " ;
22
23 pr i nt " Pl ease ent er t he number t o sear ch f or >> " ;
24 chomp($t oSear ch = <STDI N>) ;
25
26 # Fi r st sor t i t i n ascendi ng numer i cal or der
27 @sor t edAr r ay = sor t { $a <=> $b} @ar r ay ;
28
29 # Bi nar y sear ch her e
30 $count er = 0;
31 $st ar t = 0; $end = $#sor t edAr r ay ; $mi d = 0; $hi t = 0;
32 $mi d = spr i nt f (" %d", ($st ar t + $end) / 2);
33 whi l e ($st ar t <= $end) {
34 $count er ++;
35 pr i nt " Sear ched: " , $sor t edAr r ay [$mi d] ; # whi ch el ement i s bei ng {

sear ched
36 pr i nt " i n #[$st ar t , $end] [" ; # t he subscr i pt r ange
37 pr i nt $sor t edAr r ay [$st ar t] , " , " , $sor t edAr r ay [$ end] , "] \ n" ;
38 i f ($sor t edAr r ay [$mi d] == $t oSear ch) {
39 # a hi t !
40 pr i nt " \n \ "$ t oSear ch\ " f ound! \n " ;

38 Chapter 3 Manipulation of Data Structures

41 $hi t = 1;
42 l ast ;
43 } el si f ($sor t edAr r ay [$mi d] > $t oSear ch) {
44 # decr ease upper boundar y - > mi d val ue
45 $end = $mi d - 1;
46 } el se {
47 # updat e l ower boundar y - > mi d val ue
48 $st ar t = $mi d + 1;
49 }
50 $mi d = spr i nt f (" %d", ($st ar t + $end)/ 2);
51 }
52
53 i f ($hi t == 0) { pr i nt " \n \ "$ t oSear ch\ " not f ound i n ar r ay. \n " ; }
54 pr i nt " Number of compar i sons : " , $count er , " / " , scal ar (@sor t edAr r ay) , " \n" ;

This implementation is even more complicated than that of the linear search. What is worth
noting is the very low number of comparisons required in any cases(For 100 integers the
fraction printed in any caseshould be at most 7/100 1). That means among the 100 integers
in the list, at most 7 elements searched is suf�cient to deduce whether any speci�ed number
exists in the array. In Chapter 5, as an exercise,you would be asked to convert this program
into the recursive form.

Binary search works asfollows. The list is sorted in either ascending or descending order (as-
sume we have the list sorted in ascending order here). In this algorithm we always maintain
two important variables — $start and $end . Initially they are set to 0 and 99 (the subscript
of last element) respectively. Then the element in the middle (subscript 44) is examined and
compared with the number to be searched. If the number examined is larger than the input
number, that meansthe input number, if exists,would have a subscript lessthan 44,sowe can
shrink the range by reducing $end to 43. Otherwise it would have a subscript greater than 44,
so we increase$start to 45. Such a bisection processis repeated with this new set of $start
and $end , until the number is found or $end is lessthan $start . Note that on eachiteration the
range examined is halved, and that's why the maximum number of comparisons is log2(n).

An example of binary sort is shown in Figure 3.1. 18 is to be searched and is found on the
thir d iteration. The red boxesdenote the element in the middle of the range being searched,
and those in grey are those that are bypassed.

Figure3.1: An illustration of binary sort

Although it seemsbinary search performs a lot better compared with linear search, there is an
important catchhere — most arrays we encounter are not sorted, so the cost of sorting cannot

1The maximum number of comparisons can be calculated by ceiling(log2(n)) where ceiling(y) is the minimum
integer that is greater than or equal to y. In this caseceiling(log2(100)) = 7.

3.3 Hashes 39

be simply ignored in practice.

As you can possibly see in both caseswhen $NUMis large, neither approach is performing
in an ef�cient manner, especially when missesoccur becausein the linear search case,every
element in the array has to be searched in the worst case(when a miss occurs); while in the
binary search case,the array needsto be sorted �rst, and the averagesorting time of an array
grows with the array size 2 , so combining sorting and searching may be even slower than the
linear search algorithm. Towards the end of the next section we shall redo this code with a
hash,and you ought to �nd the codecanbemade cleanerand ahit or amiss canbedetermined
faster in general, especially with large array sizes.

3.3 Hashes

Hash is a special kind of data structure. There are several characteristicsassociatedwith it. It
practically takes very short time to deduce whether any speci�ed data exists. Also, the time
it takes does not largely depend on the number of items stored. This is important because
hashesare usually used for applications that handle a large amount of data.

An array is simply a contiguous block of memory and is nothing more than that. In order to
support the characteristic stated above, hashesrequire a slightly more complicated internal
structure. This is outlined in Appendix I for your reference. It explains the general principles
that further Perl knowledge is not necessaryin order to understand it. However , in this section
we are dealing with how we use hashesin Perl, and will not discuss the peculiarities of them
here.

As a quick review, each item in a hash has a key and a value. The key, which is a string,
uniquely identi�es an item in the hash. The value is any form of scalar data. Hash variables
start with the symbol %.

3.3.1 Assignment

We may assigna list to a hash variable. In this case,the list will be broken up two-by-two, the
�rst one asthe key and the secondasthe value:

%Age = ('Tom', 26, 'Peter', 51, "Jones", 23);

Becausea hash contains multiple key-value pairs, this alternative syntax may seemmore in-
tuitive to look at:

%Age = ('Tom' => 26, 'Peter' => 51, "Jones" => 23);

The symbol = > is de�ned as an almost equivalent symbol to the comma, so in general any-
where a comma is needed you can replace it with this symbol. However , the use of = > is

2In algorithmic analysis, the bestsort algorithms can attain the time complexity of O(nlogn). That is, the sorting
time t is in the form t = Knlog(n) where K is a constant and n is the sizeof the array. The function grows even faster
than n, so performance degradeswould be evident at relatively large values of n.

40 Chapter 3 Manipulation of Data Structures

particularly intuitive for data that occur in pairs. In addition, Perl allows even lesskeystrokes
by omitting the quotation marks:

%Age = (Tom => 26, Peter => 51, Jones => 23);

This is becausePerl always interpr ets the wor d before the symbol = > as a double-quoted
string. However , if you omit the quotes, the key cannot have embedded whitespace (space,
tabs and so on). To specify a key with embedded whitespace, the quotes must be speci�ed.
Also, becausePerl usesthe semicolon, not a newline, to mark the termination of a statement,
you can make the hash assignment better to look at by writing it in multiline form:

%Age = (
Tom => 26,
Peter => 51,
Jones => 23,

);

NOTES

One note about why we can omit the quotes here. According to the perldata man-
page, a wor d that has no other interpr etation in the grammar will be treated as if
it were a quoted string. For example, if an unquoted wor d is not a reserved wor d,
�lehandles, labels etc. Perl will automatically treat it asa bareword. However , avoid
barewords consisting entirely of lowercaseletters, becauseall Perl reserved wor ds
are in lowercase.As Perl is case-sensitive,this eliminates the possibility of potential
name clashesin futur e versions of Perl.

Note that on the �nal line there seemsto be a super�uous comma there. Yes, it is. The �nal
comma before the closing parenthesescan be omitted. But it is customary to have it there
in the above multiline form becauseit is likely that you may append more key-value pairs
later on. Then you will have to add the comma back, and it will result in an error if you have
omitted to do so. Bear in mind that the four formats above are identical, and you may choose
the form which looks best to you. An empty hash is an empty list assignedto a hash variable,
similar to the caseof arrays.

Becausein the assignment operation Perl expectsa list asthe rvalue, apart from lists you may
as well assign an array, or even a subroutine returning a list to the hash variable. Note that
the hash variable provides a list context here.

If we assign a hash variable to an array, or anywhere a list is expected, the key-value pairs
stored in the hash will be returned in list form. However , becauseof the way the key-value
pairs are stored in a hash, they may be (actually most likely) returned in an order dif ferent
from when they were put into the hash.

3.3.2 Accessing elements in the Hash

Accessing an element in a hash is similar to that from an array, except we replace square
brackets with curly onesand instead of an index, the key is used. Here's an example:

3.3 Hashes 41

print $Age{Tom};

The stuff within the curly brackets is an expression that is evaluated as a string. Therefore,
Tom is equivalent to 'Tom' in this case.To associatea scalarvalue to a key is assimple as:

$Hash{'Key'} = $value;

If Key already exists, it is assigned the supplied value; otherwise, a new key-value pair is
added to the hash.

3.3.3 Removing Elements from a Hash

Perl provides the delete function for removing a speci�ed key-value pair from a hash. Here's
an example:

delete $Age{Tom};

This function returns the deleted scalar value associatedwith the speci�ed key(s). So if you
print the return value in the above statement, the value(s) deleted would be displayed on
screen.

To delete all key-value pairs in a hash, you can of course use a loop to do it, but this is slow
and it would be more ef�cient to use either method below:

%Age = ();

or

undef %Age;

Here is a special example for delete that is worth mentioning:

1 %Age = (
2 Tom => 26,
3 Pet er => 51,
4 Jones => 23,
5) ;
6 @t emp = del et e @Age{ 'T om' , ' Pet er ' } ;
7 $, = " " ;
8 pr i nt " Del et ed val ues : " , @t emp, " \n " ;
9 pr i nt " Remai ni ng keys: " , keys @Age;

On line 6, we delete multiple key-value pairs from %Age. Note that the function returns a list
of values associatedwith the deleted keys, so the symbol used should be @.

Line 9 intr oduces the keys function. It returns a list of keys in the speci�ed hash. There is a
corresponding values function that returns a list of values contained in the hash.

42 Chapter 3 Manipulation of Data Structures

3.3.4 Searching for an Element in a Hash

You may test if a particular key exists in a hash by using the exists function. However , even
if the key exists in the hash, the value associatedmay be unde�ned. Use the defined function
to test if the value is de�ned.

Recall earlier we had a program that generated 100 integers in random and you look for the
existenceof a particular number in the list. We now present the version using a hash. The
number of comparisons taken is not shown, asyou cannot get this information with a builtin
hash. Of course if you build a hash yourself you would be able to seethe ef�ciency of hashes.
At least, you will �nd the implementation is a lot easier compared with the two previous
approaches.

EXAMPLE 3.8 Searching for an Element in a hash

1 #! / usr/b i n/ per l - w
2
3 # Sear ch f or an el ement i n a hash
4
5 # Gener at i ng 100 i nt eger s
6 $NUM = 100;
7 $MAXI NT = 5000; # 1 + t he maxi mum i nt eger gener at ed
8
9 sr and(); # i ni t i al i ze t he r andomi ze seed

10
11 pr i nt " Number s Gener at ed: \ n(" ;
12 f or $i (1 . . $NUM) {
13 $val ueToI nsert = spr i nt f (" %d" , r and(1) * $MAXI NT);
14 $hash{ $val ueToI nsert } = 0; # i n f act , any val ues can be assi gned her e
15 pr i nt $val ueToI nsert ;
16 pr i nt " , " unl ess ($i == $NUM) ;
17 }
18 pr i nt ")\n \n " ;
19
20 pr i nt " Pl ease ent er t he number t o sear ch f or >> " ;
21 chomp($t oSear ch = <STDI N>) ;
22
23 # Hash sear ch her e
24 i f (exi st s ($hash{ $t oSear ch})) {
25 pr i nt " \ "$ t oSear ch\ " f ound! \n" ;
26 } el se {
27 pr i nt " \ "$ t oSear ch\ " not f ound! \n " ;
28 }

Notice how clean it is to determine whether the number exists in the hash in this case(line
24). In this example, the numbers are stored askeys in the hash. Weusethe exists() function
to check if the key exists in the hash. This function returns TRUE if the speci�ed key exists.
Note that you can as well use defined() in place of exists() in this example. This function
returns true only if the key exists in the hash,and the value is not unde�ned (i.e. undef).

Table 3.2summarizes the dif ferencebetween defined() and exists() :

3.4 Contexts 43

Function Key Exists Value Unde�ned Return Value
exists() Yes No TRUE

Yes Yes TRUE
No N/A FALSE

defined() Yes No TRUE
Yes Yes FALSE
No N/A FALSE

Table3.2: Differencesbetweenexists()andde�ned()

In the example, because0 (or anything except undef) is assignedasvalue to eachkey put into
the hash, therefore, exists() and defined() yields the sameresults.

Owing to the nature of a hash,duplicate keys are not allowed. However , asI have previously
noted it is possible that by using such a random generation schemeduplicate elements may
be generated, and in this caseexactly only 1 instance is stored, so the number of elements in
the hash in this example can be lessthan 100.

3.4 Contexts

The idea of contexts in Perl may appear a bit odd at �rst glance, but you would soon dis-
cover that contexts are actually quite intuitive to understand, becausethere are many real life
examples resembling contexts in Perl.

First, look at thesetwo phrases. Note that the samewor d “pr ess” appears in both sentences,
but their meanings in the phrasesare entirely dif ferent.

Pressthe button
Freedom of press

The wor d “pr ess” plays dif ferent roles in the two sentences,one acting asa verb and the other
asa noun. Therefore, to deduce the meaning of the wor d in the phrase,we have to look at the
wor ds surrounding it, in other wor ds, the context.

I'm sure you would �nd many other examplesthat exemplify how contexts play their roles in
our daily lives, so I am not going to spend too much time mentioning things you may have
already known. Recall that earlier in this chapter I obtained the number of elements of an
array by using an assignment like this:

$numElements = @colours;

You may �nd this assignment rather peculiar. It seemsthat I have beenassigning list data to
scalardata, and they actually don't match! How can a scalardata store an array?

Yes. That's impossible (unless by using references- that we will seeat a later part of this
tutorial). Also recall that I mentioned earlier that I was “evaluating an array in scalarcontext”.
Now I am telling you what this phrase means.

44 Chapter 3 Manipulation of Data Structures

Becauseyou are now assigning something to a scalar variable, the data type expected on the
right hand side of the assignment operator is naturally a scalar value. In this way, we have
createda scalarcontext around the array @colours . Becausea scalarvalue is requestedinstead
of an array, Perl de�nes that by evaluating an array in scalar context, the number of elements
stored in the array is returned and the value of which is assignedto $numElements .

It is important to bear in mind that the rules as to how a data type is evaluated in another
context depend on the de�nition, and there is no general rules of inference. Later on, when
you are to write subroutines, you will be taught to use the wantarray() function to determine
the contexts so that you can specify what to return from your subroutine in dif ferent contexts.

Remember I have mentioned Boolean context earlier in this chapter? Actually there is not a
“Boolean” context, becausePerl does not have an intrinsic Boolean data type. Perl achieves
this by using scalar context instead. Perl de�nes that the numeric zero (0), the empty string
(“”) and the unde�ned value (undef) are interpr eted asFALSE, and all other scalarvalues are
interpr eted asTRUE. Therefore,anywhere a Booleantest is expectedyou can place any scalar
value there instead, and Perl shall evaluate it according to this rule.

Sometimesyou may want to evaluate a list in scalar context, but it is in list context instead.
A useful function about contexts is scalar , which provides the necessaryscalarcontext, as in
the following example:

print scalar(@array);

Without the scalar function, the array is evaluated in list context and so the contents of the
array will be print ed. However , if we would like to print the number of elements in the
array instead, the scalar function provides the necessaryscalarcontext for this purpose.

I do not aim at telling you everything about how dif ferent contexts give rise to dif ferent be-
haviours when we deal with operators at the moment. Instead, it is important to realize that
operators can exhibit dif ferent behaviours depending on the context they are in. You are go-
ing to have a boring day probably reading the next chapter, asyou are going to know in more
details how eachoperator is affected by contexts.

3.5 Miscellaneous Issues with Lists

Before we start a new chapter, let us pay attention to several issues concerning lists which
have not yet beenmentioned above.

You have seenin the previous section that, becauseof evaluation of an array variable in scalar
context, the number of elements in the array is returned:

$a = @array;

but things get entirely dif ferent when you write it this way:

$a = (35, 48, 56);

3.5 Miscellaneous Issues with Lists 45

This is a special case,becausein scalarcontextthe list on the right of the assignment operator is
actually a list of values delimited by the comma operator (,). This operator is borrowed from
C/C++ and has nothing to do with lists or arrays. The behaviour of this operator is, evaluate
each of the expressions(in this case,numbers) delimited by commas, and return the value
resulting from the last expression. Therefore, in this example 56 is returned and assigned to
$a. This applies to void context aswell. While

@array = (35, 48, 56);

the commas there act as list argument separators. As a rule, always bear in mind that a list is
only a list in list context. In other contexts the rules of comma operators apply.

Thanks to the �exible syntax of Perl, we canassignmultiple values concurrently, like this (this
is called list assignment):

($a, $b) = (11, 22);

Both sidesare lists of the samesize,so this is just a mapping: 11 is assignedto $a and 22to $b.
What about if the list on the right has more elements than the one on the left? Then the extra
elementsare simply ignored. What about if the list on the left has more elements?Then some
variables in the left hand list shall receive the value undef , as you may expect. To swap the
values of two variables, an operation that requires an additional temporary variable in most
other programming languages,you can perform it in Perl simply by:

($x, $y) = ($y, $x);

Consider this example and try to guesswhat happens:

($a, @b) = (11, 22, 33, 44);

11 is assignedto $a. The remaining threeelementsare assignedto @b. But what if you do this?

(@a, $b) = (11, 22, 33, 44);

In this case,@agobbles up all the values in the list, leaving the value undef to $b. We describe
this behaviour as“gr eedy”.

In this chapter, you have learnt how to use the three fundamental data structures in Perl,
namely variables, arrays and hashes. I have also tried to give you some ideas on the concept
of contexts, which is of fundamental importance in Perl. In the next chapter, I will intr oduce
to you the operators available in Perl.

46 Chapter 3 Manipulation of Data Structures

Chapter 4

Operators

4.1 Introduction

Operators are important elements in any programming language. They are so called because
they operate on data. For those who are new to computer programming the operators with
which they may be most familiar are the arithmetic operators, like addition, subtraction, mul-
tiplication and division. Yet there are many more varieties of operators in programming lan-
guages. Perl provides more operators than most programming languages I could think of,
but most of them fall within one of the several categoriesthat we would go into detail in this
chapter. Although devoting an entire chapter to discuss operators is rather boring, it is im-
portant for you to understand what operators are asthey act asthe glue to bind piecesof data
into an expression.

Arithmetic operators manipulate on numeric scalar data. Perl can evaluate an arithmetic
expression,in a way similar to our daily-life mathematics.

Assignment operators are used to assign scalar or list data to a data structure. Apart from =
that you learned earlier, there are other operators, like +=, that perform additional operations
at the sametime.

Comparison operators are used to compare two pieces of scalar data, e.g. alphabetically or
numerically and returns a Boolean value. For example, you have two variables and you can
use a comparison operator to deduce which one is numerically larger.

Equality operators comparestwo piecesof scalardata and returns if their values are identical.
They may be considered special casesof comparison operators.

Bitwise operators provide programmers with the capability of performing bitwise calcula-
tions.

Logical operators can be used to do someBoolean logic calculations.

String manipulation operators manipulate on strings.

Thereare someother operators that do not fall into the categoriesabove. Someof them will be
covered in this chapter, and the rest would be intr oduced as needed in subsequent chapters
in this tutorial.

47

48 Chapter 4 Operators

BecausePerl classi�es all data into one of the two forms, namely scalarand list data, operators
can be classi�ed, similarly according to the number of operands, into two groups. Either
the number of operands is �xed or variable. An operator that takes on one, two and three
operands are referred to asunary , binary and ternary operators, respectively. List operators,
on the other hand, can take a list of arguments asoperands.

4.2 Description of some Operators

In this section we shall study a number of operators. This is not intended to be a full coverage
becauseit would be better for you to learn the rest later on in the tutorial as you accumulate
more Perl knowledge. If you would like to have a detailed referenceof the whole family of
operators in Perl, pleaseconsult the perlop manpage.

4.2.1 Arithmetic Operators

Arithmetic operators refer to the following operators:

? + (addition)

? - (subtraction)

? * (multiplication)

? / (division)

? %(modulus)

? + (positive sign)

? - (negative sign)

? ++ (autoincrement)

? -- (autodecrement)

? ** (exponentiation)

The operators +, - , * , / take two operands and return the sum, dif ference,product and quotient
respectively. Note that the division operation is �oating-point division. Unlike C, Perl does
not offer builtin integral division. To get the integral quotient, you may usethe int() function.
For example, int(7 / 2) evaluates to 3.

Perl won't round a number to the nearestinteger for you automatically. If you need this, the
“corr ect” way to do this is

$num = 7 / 2;
print int($num+0.5), "\n";

http://www.perldoc.com/perl5.8.0/pod/perlop.html

4.2 Description of some Operators 49

which, becausethe �rst decimal place is 5 or above, the value print ed is 4, not 3.

The modulus operator is more problematic. The operands of this operand are both integers.
If you feed any �oating-point numbers (i.e. decimals) as operands they will be coerced to
integers. Assume we are carrying out $a % $b.

If $b is positive, the value returned is $a minus the largest integral multiple of $b such that the
result is still positive. For example,

63 % 5 = 3 (63= 12� 5+ 3, the largest multiple in this caseis 12)

-63 % 5 = 2 (� 63= � 13� 5+ 2, the largest multiple in this caseis � 13)

If $b is negative, the value returned is $a minus the largest integral multiple of $b such that
the result is still negative. For example,

63 % -5 = -2 (63= (� 13) � (� 5) + (� 2), the largest multiple in this caseis � 13)

-63 % -5 = -3 (� 63= 12� (� 5) + (� 3), the largest multiple in this caseis 12)

Suchbehaviours are so tedious that most programmers simply use the modulus operator for
the �rst case— where both operands are positive integers, which evaluates to the remainder
of $a / $b.

The positive/negative signs, just as in our usual mathematics, are unary operators that are
af�xed before a number to indicate whether it is positive or negative. Our usual convention
is that the unary positive sign is not speci�ed, becauseit is the default asexpected.

If you know C/C++, the autoincrement and the autodecrement operators are identical to what
you have learned. For those who don't know, it's worth to spend a few minutes to repeat all
the details here. These operators can be placed before or after a variable. There are four
possible variations:

? ++$var (Pre�x Increment)

? $var++ (Post�x Increment)

? --$var (Pre�x Decrement)

? $var-- (Post�x Decrement)

The �rst two areautoincrement, while the remaining two areautodecrement. If autoincremen-
t/autodecr ement is performed as a statement on its own, the pre�x or post�x con�gurations
do not produce any dif ference. For example, both ++$a; and $a++; as standalone statements
increasethe value of $a by 1. However , they are dif ferent if the operators are used aspart of a
statement. Consider the following examples:

A. $b = ++$a;

B. $b = $a++;

50 Chapter 4 Operators

In statement A, $a is �rst incremented, and then the new value is returned. In statement B,
however, the value is returned �rst, and then $a is incremented. Therefore, the value returned
(and is thus assigned to $b) is the value before increment. The two forms dif fer in the order
of increment/decr ement and return of value. Autodecr ement works in the sameway, except
the variable is decremented instead.

In other wor ds, statement A and statement B are identical in effect as the following respec-
tively:

++$a; $b = $a; # Statement A equivalence
$b = $a; ++$a; # Statement B equivalence

The exponentiation operator calculatesthe n th power of a number. For example, 43, i.e. 4*4*4
is expressedby 4**3 , and the result is 64. Both operands can be �oating point numbers.

All the operands discussed in this section take on scalar values only. In other wor ds, they
createa scalarcontext for the operands.

4.2.2 String Manipulation Operators

String manipulation operators include the following:

A. x (string repetition operator)

B. . (string concatenation operator)

The string concatenation operator is used to concatenatetwo strings. In other wor ds, it glues
two piecesof string together. For example,

"hello " . "guy"

results in the string “hello guy”.

You can concatenateas many piecesof string as you wish by using a seriesof concatenation
operators together, like this:

$username . ", your disk quota is " . $quota . " Megabytes."

In general, the concatenation operator dictates that both operands must be strings, and nu-
meric operands would be converted to string form before concatenation (still remember that
Perl does type conversions internally if necessary?).However , Perl can become highly con-
fused about whether you are using the concatenation operator or the decimal point if both
operands are numeric literals. For example:

A. print "1"."1"; (return: “11”)

B. print "1".1; (return: “11”)

4.2 Description of some Operators 51

C. print 1."1"; (return: “11”)

D. print 1.1; (return: 1.1)

E. print 1 . 1; (return: “11”)

F. print 1. 1; (return: error!)

G. print 1 .1; (return: “11”)

In caseA, B and C, Perl thinks that the dot representsthe concatenation operator becauseone
or more operands is a string literal. Note the dif ference between casesD and E. Although
whitespace does not in�uence how Perl interpr ets an expression in general, this is not the
caseasshown in this example. In caseD, becausethe dot follows the �rst 1 immediately , Perl
thinks that you would like to usethe decimal point, and returns the numeric value 1:1. In case
E, however, becausethere is a spacebefore the dot, Perl thinks that you would like to use the
string concatenation operator, and glues them up for you. Sois caseG.

However , in caseF, Perl thinks that you would like to supply a �oating-point number like
in caseD, but you supply it with two numbers with no comma in between (note that 1: is
identical to 1), so this is a syntax error! You get the sameerror if you replacecaseF with print
2 3; . However , becauseit is nonsense(although allowed) to concatenatetwo literals, just take
this assomeextra information and little attention can be paid to it.

In scalarcontext, the string repetition operator returns the string speci�ed by the left operand
repeatedthe number of times speci�ed by the right operand. For example,

$str = "ha" x 5;

results in the string “hahahahaha” being assignedto $str .

In list context, if the left operand is a list in parentheses,it repeatsthe list the speci�ed number
of times. Examples:

@array = ("a") x 3; # or even (a) x 3 will work, but not a x 3

results in the list ("a", "a", "a") being assignedto @array .

@array = 3 x @array;

replacesall the elements with the value 3. Note that the second operand always has a scalar
numeric context.

4.2.3 Comparison Operators

In Perl, there are two setsof comparison operators. The �rst set compares the operands nu-
merically:

A. < (lessthan)

52 Chapter 4 Operators

B. > (greater than)

C. <= (lessthan or equal to)

D. >= (greater than or equal to)

E. <=> (general comparison)

The secondset comparesthe operands stringwise:

A. lt (lessthan)

B. gt (greater than)

C. le (lessthan or equal to)

D. ge (greater than or equal to)

E. cmp (general comparison)

At this point it is important to tell you one behaviour of Perl. As you know, Perl dif ferentiates
only scalarand list data. That implies that Perl is quite ignorant about whether the value of a
given variable (or a scalar element of a list) is a string or a number. This is why we have two
setsof comparison operators de�ned in Perl, in this way the programmer should choosethe
appropriate set of comparison operator for comparison.

Becauseof the fact that Perl does not dif ferentiate string and numbers much, it allows you to
use a string wherever a number is required, and vice versa. However , this involves a conver-
sion that I have to explain it here. This behaviour is not speci�c to comparison operators only,
but a general rule that you have to bear in mind at all times when you are writing your own
scripts. Consider the two statementsbelow:

A. print "23.1abc" + 4;

B. print "23.1abc" . 4;

The addition operator (+) requires a numeric context (i.e. it requires numeric values as
operands). Therefore, Perl extracts the leading numeric portion of the double-quoted string
until a non-numeric character is encountered, and converts this portion into a number (which
yields 23:1 in this example). 4 is then added to this number, thus yielding 27:1 for the �rst
statement. But what if the string started with non-numeric characters?Simply a 0 is returned.
Also, if the string-to-number conversion involves a string that contains any non-numeric char-
acters,Perl will display a warning messageif you have warnings turned on.

The concatenation operator (.) requires a string context. Therefore, Perl converts the second
operand (4) into a string and is then appended to the end of the �rst operand (“23.1abc”), thus
yielding the output “23.1abc4”. This is how Perl automatically converts between numbers
and strings to and forth asneeded.

Comparing two numbers is easy, but what about two strings? How does the computer com-
pare two strings, possibly with non-alphanumeric charactersin it? Perl comparestwo strings
by comparing the ASCII Code of each individual character in the string. As internally the
computer only recognizesnumbers, a way of representing characterswith numbers have to

4.2 Description of some Operators 53

be devised. ASCII representation is one of the several schemesavailable, and is well adopted.
You cango to this website to consult the ASCII Table,which contains the characterswith their
associatedASCII code. ASCII codesare in the range 0 - 127,and there is an extended set in
the range 128 - 255 which is not well supported on many systems. Don't ask me why the
characters are assigned in this way. The ASCII table was de�ned as such, and there's little
signi�cance about its origin anyway. Let's compare the two piecesof string in this example:

“Ur gent”, “agent”

Perl compares character by character. First compare the �rst character of the two strings, `U'
and `a'. `U' has the ASCII codeof 85,while `a' is 97. Because97 is greater than 85,Perl decides
that the latter character is greater, and thus “agent” is greater than “Ur gent”. In the caseof
comparing “tooth” and “toothpicks”, the longer one prevails for obvious reasons.

After you have learned how Perl handles string and numeric comparison in general, it's time
to look at how you specify the comparison with Perl. That's easy, becauseyou merely put the
appropriate operator in between the two operands. For example, to test if “agent” is lessthan
“Ur gent” stringwise, simply specify "Urgent" lt "agent" , and the result is true. Note that
Perl does not have the intrinsic Boolean type, so if you pass the result dir ectly to the print
function, it is customary for Perl to output 1 for true, and “” (an empty string) for false. The
best way to have the test result displayed properly is by using the conditional operator ?: . I
will talk about this shortly later on in this chapter, but this is how you can do it:

print "Urgent" lt "agent" ? "true" : "false";

causesthe wor d “tr ue” to be printed if the test is true, and “false” is printed if otherwise.

Here is another example showing how numeric comparison may be used to decide on which
block of code to be executed:

if ($score >= 90) {
print "Well done. Your score is $score.\n"; # A

} else {
print "Work hard. Your score is $score.\n"; # B

}

In the next chapter you will learn how to use the conditional statement like if aspresentedin
this example. Basically, the concept is simple. If the value of $score is greater than or equals
90,statement A is printed; statement B is printed otherwise.

Be aware that you may get dif ferent results if you compare two piecesof scalar data numeri-
cally or stringwise!

The <=> and cmp operators can be regarded as general comparison operators. Becauseof the
shape, they are sometimes referred to in Perl manpages as spaceshipoperators. <=> compares
numerically while cmp compares stringwise. The action of these two operators are similar,
and I shall take <=> asan illustration.

The characteristics of <=> is as follows. Denote the left operand as $a and the right operand
$b. If $a < $b, the result is -1. If $a > $b, the result is 1. If both operands are equal, that is, $a

http://www.asciitable.com

54 Chapter 4 Operators

== $b (seebelow), the result is 0. This is a handy operator to quickly establish a trichotomy
by determining in a single operation whether a number is greater than, equal to or less than
another. Despite its power, it is seldom used in practice. It is mostly used with the sort()
function to sort a list of scalarsin a convenient manner.

4.2.4 Equality Operators

Equality operators include the following:

== (equal - numeric)

!= (not equal - numeric)

eq (equal - stringwise)

ne (not equal - stringwise)
Similar to the casefor comparison operators, we have two setsof equality operators. One set
for numeric comparison, the other set for strings. Equality operators can usually be regarded
as part of the comparison operators, but some books may prefer to classify them into two
categories. There's actually little point to argue which approach is better, as dif ferent book
authors take dif ferent views. Equality operators comparestwo piecesof scalardata and return
a Booleanvalue (again, scalarvalue instead in Perl) that indicates if the two piecesof data are
identical.

The �rst two operators compare numerically , while the remaining two compare stringwise.
For the equal operators (==, eq) they return true if the two operands are identical, false if
otherwise. The inequality operators (!= , ne) have an opposite sense,they return false if the
two operands are identical, true if otherwise.

The equality and comparison operators we have covered so far are concluded by these four
examples:

A. 'true' == 'false' # true !!

B. 'add' gt 'Add' # true

C. 'adder' gt 'add' # true

D. '10' lt '9' # true

In example A, == requiresa numeric context, thus both strings are converted into 0. Both sides
are equal and evaluates to true (although you would receive a warning if -w is enabled). In
example B, Perl will stop after checking the �rst charactersince `a' is greater than `A'. Beware
that in the ASCII table capital charactershave smaller ASCII codesthan the small letter coun-
terparts! In example C, becausethe �rst three characters are the same and Perl cannot yet
deduce whether `adder' is greater than `add' the longer string shall be considered greater. In
example D, sincewe compare with lt , `1' is lessthan `9', therefore, the comparison evaluates
to true. This example and example A illustrate why in Perl we need 2 setsof comparison op-
erators. BecausePerl is loosely typed and does type conversions automatically, there should
be a method for Perl to know whether you would like to compare them asnumbers or strings.

4.2 Description of some Operators 55

4.2.5 Logical Operators

Logical operators include the following:

|| or (Logical OR)

&& and (Logical AND)

! not (Logical NOT, i.e. negation)

xor (Logical XOR - Exclusive OR)

The logical operators performs Boolean logic arithmetic. We have seenhow to do a test using
the comparison and equality operators. But what if you would like to carry out two or more
tests and check if all of them are true? Boolean algebra can do it rather easily. However , it is
out of the scopeof this tutorial somehow for me to teachyou the speci�cs of Booleanalgebra,
and I would focus on how to use the Perl logical operators only.

You may discover that there are two setsof OR, ANDand NOToperators. || , && and ! refer to
the C-Style version. If you know C/C++, theseoperators would look familiar to you, and are
continued to be supported in Perl. Perl also has its own set,consisting of or , and, not and xor .
Note that Perl gives you an extra xor logical operator, that is not available in C/C++. The two
setsdif fer only by precedence(which you will learn in the next section). The C-style operators
have higher precedence,while the Perl operators have the lowest precedenceamong all the
Perl operators.

In the above example, we would like to seeif the results of both tests are true. We can then
use either logical AND operator to do it. The result would be true only if both testsare true,
and false if otherwise. The logical OR operators return false only when both tests are false,
and true if otherwise. The logical NOT operator toggles the truth value. For example, !(13 <
25) is false,becauseit inverts the truth value of 13 < 25, which is true.

The exclusive or operator returns true if exactly one of the two operands is false. That is, one
is true while the other is false.

Here is the truth table of the logical operators we have covered so far:

test1 test2 and && or || xor
true true true true false
true false false true true
false true false true true
false false false false false

test not !
true false
false true

Table4.1: Truth tableofvariousPerl logicaloperators

Here are several examples to conclude:

56 Chapter 4 Operators

(4<8) && (16<32) (return: true)
(4<8) xor (16<32) (return: false)
(4<8) || (16<10) (return: true)

Another important behaviour I haven't told you yet concerning logical operators is the short-
circuiting property. Take and asan example. Given the expression

(4 > 6) and (5 < 7)

you cantell by merely looking at the �rst expressionthat the whole expressionis false,regard-
less of the value of the second expression. Similar to the casefor the or operator, if the �rst
operand evaluates to true already, it is not necessaryfor Perl to examine the second expres-
sion. Therefore, Perl will just ignore that expressionand do NOT even attempt to evaluate it.
This behaviour is known asshort- circuiting. The logical AND aswell aslogical OR operators
support short-circuiting. xor , for example, cannot short-circuit becauseits nature requiresthe
value of both expressionsbe examined.

Short-circuiting is signi�cant becauseit eliminates several runtime errors, in particular in the
following example we will not get the “division by zero” error becauseof short-circuiting:

EXAMPLE 4.1 Safe Division

1 #! / usr/b i n/ per l - w
2
3 pr i nt " == Saf e Di vi si on ==\n " ;
4 pr i nt " Pl ease ent er t he di vi dend > " ;
5 chomp($x = <STDI N>);
6 pr i nt " Pl ease ent er t he di vi sor > " ;
7 chomp($y = <STDI N>);
8
9 $quot i ent = ($y?"A nyt hi ng" :u ndef) && $x/$ y;

10 i f (!d ef i ned $quot i ent) {
11 pr i nt " Di vi si on by zer o! \n " ;
12 } el se {
13 pr i nt "$ x / $y = $quot i ent \n " ;
14 }

This example looks rather dif �cult to understand. However , the core of the program is on
line 9. First, the value of $y is checked for zero (or empty string, if you don't enter anything).
If it evaluates to zero, undef will be returned after the ?: operation. There is one catch here
— if any of the operands in a logical operation is undef , the result is undef instead of true
or false, a behaviour that is not shown in the truth table above. As a result, $quotient will
immediately get the value undef without evaluating $x/$y . If $y != 0, the string “Anything”
will be returned. In fact, in this example you can substitute this string by any expression
that evaluates to a non-zero value becausethis is only used to supply a true value as the �rst
operand of the && such that short-circuiting does not occur. As a result, the expression$x/$y
is evaluated and the result of which is returned and assignedto $quotient .

Subsequently, a check of whether $quotient is undef is suf�cient to tell whether “division

4.2 Description of some Operators 57

by zero” occurs. Depending on this result, either an error messageor the quotient will be
print ed.

4.2.6 Bitwise Operators

Bitwise operators refer to the following:

<< (binary shift left)

>> (binary shift right)

& (bitwise AND)

| (bitwise OR)

ˆ (bitwise XOR)

� (bitwise NOT)

The �rst two operators are the binary shift operators. The two operands of these operators
must be integral. As you may know, numbers are representedin binary form internally . The
left operand is the number to be operated on, while the right operand is the number of bits to
be shifted. Let me explain this with the help of an example.

Say you would like to perform 60 >> 2. First we convert 60 into binary notation, that is
1111002 (subscript 2 meansrepresentation in base2, that is, binary). In this example we intend
to shift 2 bits to the right, that means the two least signi�cant bits (the bits on the far right)
are removed, and thus resulted in 11112, which is 1510 in decimal notation, so 15 would be
returned.

We have used the binary shift right in the example. On the other hand, the binary shift left
operator doesthe opposite. It shifts the integer speci�ed left a speci�c number of bytes, �lling
the least signi�cant bits with 0. Observant readersmay notice that eachbinary bit shift to the
left actually multiplies the number by 2. Try it.

The remaining four operators compare the two integral operands bit by bit. As an example,
to extract the 4 least signi�cant bits of the number $num, we can use the expression $num &
15. The returned value is the integral expressionof the last 4 bits of $num. The reasonis quite
simple. The binary representation of 15 is 11112. Say$num takes the value of 37 (1001012). The
operation is shown below:

1 0 0 1 0 1
& 0 0 1 1 1 1

0 0 0 1 0 1

The bitwise AND operator compareseachbit. If both corresponding bits are1, the resulting bit
is 1; otherwise 0. The aboveexample demonstratesa technique known asbit-masking , and 15
is the mask in this example. To extract speci�c bits, just setup a mask with the corresponding
bits setting to 1, and 0 for other bits that we are not interestedin. Note that although 15is only

58 Chapter 4 Operators

4-bit long, you may consider that it is extended automatically to 6 bits, with the two most
signi�cant bits set to 0.

The other bitwise operators have the same semantics as their logical operator counterparts
except the truth value is representedby 1 and 0 for true and false respectively. Therefore, the
details of which are not repeatedhere.

Bitwise operators are in general rarely used in most scripts. They are usually only used in
applications such ascryptography or binary �le access.

4.2.7 Assignment Operators

Assignment operators refer to the following operators:

= (assignment operator)

+= -= *= /= %= **= (arithmetic manipulation with assignment)

.= x= (string manipulation with assignment)

&&= ||= (Logical manipulation with assignment)

\&= |= ˆ= <<= >>= (Bitwise manipulation with assignment)
I have mentioned quite a lot about the ordinary assignmentoperator = in the previous chapters
already. Now consider this example:

$num = $num + 15;

You should understand what this means, do you? The value stored in $num is added to 15,
and the result is again assignedto $num. The net effect is to increment the value of the variable
by 15. However , somepeople may prefer that manipulation and assignment be accomplished
by one, instead of two operators. Therefore, Perl recognizesseveral shorthand notations as
shown above.

In general, if you can write a statement in this format:

op1 = op1 operator op2;

you can have a shorthand version like this:

op1 operator = op2;

For instance, the example above is identical to $num += 15; However , note that not all the
operators mentioned above have such a shorthand version. Look at the list above for all the
recognized shorthand operators. As an example, to invert all the bits in an integral scalar
variable (that is, on a technical parlance, to assignthe “1s complement” to the scalarvariable),
we have to write

$num = ˜$num;

4.2 Description of some Operators 59

4.2.8 Other Operators

Here I shall intr oduce to you some other operators that do not �t in any of the above main
categories. The operators that would be covered here include the conditional operator and
the range operator. The comma operator and => have already beendescribed in detail in the
previous chapter. Putting aside the builtin functions that may be considered operators in Perl,
the remaining operators are -> , =� and ! � . I have chosento defer mentioning the remaining
operators becausethey are related to some later topics and I would cover them in those
sections. The �rst one, the arrow operator is similar in some senseto the pointer -to-member
operator in C. This would be intr oduced in the referenceschapter. The other two are used for
pattern matching with regular expressions.

The conditional operator ?: is a ternary operator. In other wor ds, it has threeoperands. The
syntax is asshown below:

test-expr ? expr1 : expr2

The �rst operand (test-expr) is an expression. If this expressionevaluates to true, expr1 will
be returned by the conditional operator; otherwise, expr2 is returned. You are likely to use
conditional operators quite often in the futur e becauseit is considered too “bulky” to use the
if-else structure all the time. This is an example using if-else to compare the values of $a
and $b, and assign the smaller value to $c :

if ($a < $b) {
$c = $a;

} else {
$c = $b;

}

By using the conditional operator, this 5-line structure (although no one will stop you from
writing all this on one line) can be transformed into the simpler statement:

$c = $a < $b ? $a : $b;

The following example is extracted from the perlop manpage which demonstrates how the
list context around the conditional operator propagatesto expr1 and expr2 .

$a = $ok ? @b : @c;

In this example, depending on the value of $ok , the number of elements of either @bor
@c is returned and assigned to $a. First, the assignment to $a creates a scalar context
around the conditional operator. Therefore, the conditional operator is expected to return
ascalarvalue, and sothe two possiblevalues to bereturned will beevaluated in scalarcontext.

Although the conditional operator is inherited from C, there is one important behaviour that
is unique to Perl. The conditional operator can be assigned to if both expr1 and expr2 are
legal lvalues. This is an example:

60 Chapter 4 Operators

($whichvar ? $var1 : $var2) = $new_value;

In the next section, “Operator Precedenceand Associativity”, we would see an example
on how you may obtain unexpected results involving the conditional operator becauseof
operator precedence.

The behaviour of the range operator is (..) depends on the context around the op-
erator. The range operator actually consists of two disparate operators in list context and
scalarcontext. The range operator in list context is more frequently seen,so I will cover it �rst.

I have intr oduced the range operator in list context brie�y in the previous chapter, when
I described how you can construct an array. The range operator in list context returns an
array consisting of the values starting from the left value, with the value of eachsubsequent
element incremented by one until the right value is reached. For example, @array[0..2] is
synonymous with @array[0,1,2] to return an array slice. Note that both the left and right
values would be converted to integer by chopping off the decimal portions in casethey are
not already integers.

Not only integers can be used in the range operator, you can experiment with alphabets as
well. For example, ('a' .. 'z') and ('A ' .. 'Z') are two lists representing small letters and capital
letters, respectively.

4.3 Operator Precedenceand Associativity

Now we have learned several operators, so it's time for us to put them together. It is not
uncommon that a given statement contains more than one operator. Operator precedence
and associativity arise asa result. Recall that in elementary Maths classteachersteachus in a
mathematical expression involving several arithmetic operators, multiplication and division
shall be performed before addition and subtraction. For example, 3+ 6� 7 is interpr eted as
3+ (6 � 7), not (3+ 6) � 7. In this case,we say that multiplication and division has higher
precedence than addition and subtraction operators. Becausemultiplication has a higher
precedencethan addition, the multiplication operation, involving the two operands 6 and 7,
is performed �rst, and then the result 42 is added to 3, getting 45 asthe result.

In Perl, becausethere are many operators, the rules of precedenceis far more complicated. In
order to describe the relative precedenceamong the operators, most programming languages
would use an operator precedencetable to show the relative precedenceof the operators,
and Perl is of no exception. Table 4.2 shows the operator precedenceand associativity table,
which you can obtain from the perlop manpage.

The operators are arranged in order of decreasingprecedence.That is, the operators at the top
(Terms and List Operators) have the highest precedence,while the operators at the bottom
(or , xor) have the lowest precedence.Operators on the sameline have the sameprecedence.

The �rst column lists the associativity of the operators. Associativity is useful when there
are several operators of the same precedencein a statement. In this situation, the order of
evaluation of these operators depends on the associativity. If the associativity is right, then
the rightmost one would be evaluated �rst, then the one on the left, and so on. That's why
cascadedassignment is possible. The idea is the samefor left associative. You may also �nd
that someoperators are labelled “nonassoc” (non-associative). The operators are classi�ed as

4.3 Operator Precedenceand Associativity 61

Associativity Operators
left Terms and list operators (leftwar d)
left ->
nonassoc ++ --
right **
right ! � n + - (unary)
left =� ! �
left * / % x
left + - .
left << >>
nonassoc named unary operators
nonassoc < > <= >= lt gt le ge
nonassoc == != <=> eq ne cmp
left &
left | ˆ
left &&
left ||
nonassoc
right ?:
right = += -= *= etc. (assignment operators)
left , =>
nonassoc List operators (rightwar d)
right not
left and
left or xor

Table4.2: OperatorPrecedenceandAssociativityTable

62 Chapter 4 Operators

non-associativeif the order of evaluation is not important, or not applicable for other reasons.
In general, you don't have to worry about the order of evaluation of the non-associative
operators really much.

To demonstrate the effect of operator precedenceand associativity, let's go over several
scripts here.

#!/usr/bin/perl -w

$, = "\n";
$a = 13, $b = 25;
$a += $b *= $c = 35 * 2;
print "\$a == $a, \$b == $b, \$c == $c";

This one is practically easy. I would use it to illustrate how precedenceand associativity
works. The problematic statement is on line 5, and you shouldn't have problems with the rest
of the script, so I am focusing on this line only. To deal with this statement, �rst try to locate
the operators concerned. The operators, by scanning from left to right, are:

+= *= = *

Now locate the operators with the highest precedence,and it is * in this case. Therefore,
multiplication would be performed �rst. The operands of this operator are 35 and 2, so
this multiplication yields 70. The remaining are all assignment operators having the same
precedence,so we look at their associativity. Becausethe associativity is right, the rightmost
one is evaluated �rst, which is =. The operands are $c and 70 (the value of the expression35
� 2), so 70 is assignedto $c . Then, $b *= 70 is evaluated, and $b is eventually assigned1750
(70 � 25). At last, $a += 1750 causing $a to be assigned1763.

There is not much confusion here, but let's consider another more tricky example, of which
the result is not necessarilyapparent at �rst glance.

#!/usr/bin/perl -w

$, = ", ";
$a = 1, $b = 0;
print $a >= $b ? $b : $a += 6, $a;

I �rst saw a similar example from a C++ book, and I adapted it to becomea Perl script. This
is a really notorious example, becauseit includes ?: , which easily leads to unexpected result
if you are not careful enough. I hope you could understand my explanation as this example,
though seemingly short, is so notorious that it is rather dif �cult for me to explain it well.

Now let's have a quiz: without actually running it with your perl interpr eter, try to deduce
the printout of this example. Let's give you two choices:

A. 0, 1

B. 6, 1

4.3 Operator Precedenceand Associativity 63

(don't look at the answer below before you have an answer in your mind)

If you chooseoption A, I'm sorry, you'r e wr ong. But don't despair, asmany people share the
samemistake as you do, and it is common and understandable for people to make mistakes.
Although novices are more prone to make mistakes, nothing will stop veterans from making
mistakes aswell. Most computer programs we are using have bugs. Somebugs are obvious,
but there are many more hidden oneswhich are not normally revealed unless your program
gives unexpected output. Trust me, debugging is going to occupy most of your development
time, and is the most tedious job for all programmers. If you chooseoption B,congratulations,
you are correct. Hope that you did not get the correct answer by sheerguesswork. Anyway ,
let's look at how we arrive at the answer.

If you chooseoption A, you may have the impr ession that += has a high precedence,but this
is not the case.In this example, ?: also exists,which hasa higher precedencethan +=, so ?: is
evaluated before +=. Here comesthe trouble. The operators, scanning from left to right, are:

print >= ?: += ,

print is a list operator, and has the highest precedence.SoPerl looks on the right hand side
for its parameters. Then Perl sees>=, which has the second-highest precedence. So $a >=
$b is then evaluated, yielding true. Among the remaining operators, ?: is the highest. The
problem is, what are its operands? As you have learned, this operator has threeoperands, the
so-called “test” part (that is $a >= $b, and have found to be true), the “tr ue” part ($b), and
the “false” part. But wait! What is the false part? $a or $a += 6? Its the former one, in the
contrary to what you may have expected.

As Perl scansfrom left to right to �nd the false part, it encounters the += operator, which has
a lower precedencethan ?: , and Perl stops and claims that the false part is $a. Then Perl
knows what to do, so evaluates the conditional operator, returning the true part, that is $b
(that holds the value 0). Anything left? Yes,we still have the dangling += 6 part! It is tricky
that the conditional operator returns an lvalue if it can, and so $b += 6 is evaluated, causing
$b to hold the value 6 instead. We have �nished evaluating the �rst argument to the print
operator, and the secondoperand is $a, which has been untouched. That's how we arrive at
the answer “6, 1”.

Troublesome enough? Two long paragraphs just to explain one statement. If you are
still scratching your head, try to read these two paragraphs repeatedly until you under-
stand. Soyou see,operator precedenceand associativity can trip you up if you are not careful.

But what if this is not your intention? What if you'd like to have $a += 6 as your false part?
Recall how you do this in arithmetic — adding a pair of parentheses.This applies to Perl as
well. This is easily done asthis:

print $a >= $b ? $b : ($a += 6) , $a;

In Perl, parenthesesare treated as “terms”, which has the highest precedencein the prece-
dence table. This ensures that all expressions in parentheses are evaluated before other
operators do. Parentheses is the cure for those who enjoy writing complicated state-
ments but wouldn't like to memorize (or consult) the operator precedencetable. Adding
parentheses appropriately not only eliminates a great deal of effort when you or other

64 Chapter 4 Operators

programmers read your code at a later time, many unexpected errors could be eliminated as
a result. But sometimesparenthesesdo not add much clarity to your code. Here'san example:

print(lc(shift(@MyA rra y)));

In this example, all but print are named unary operators. Becausenamed unary operators
have only one parameter, in general there is not much confusion if you just omit the paren-
theses. In conclusion, use parentheseswherever appropriate. Feel free to insert parentheses
asyou see�t to minimize confusion but don't overdo it.

There are several points to note arising from this example. First, although looking na�̈ve to
mention here, whitespace is NOT a determinant of the order of evaluation. You de�nitely
cannot write the above statement in this way and expect it to work the same way the
parenthesized version does:

print $a >= $b ? $b :$a+=6 , $a;

This is actually the same as line 5 in the example! So it returns “6, 1”, not “0, 1”. This is
becausewhen the Perl interpr eter loads the script, it parses it and removes all intervening
whitespace automatically.

Second,you have to be careful about the use of parentheses.Consider theseexamples:

A. print 1+2+3;

B. print (1+2+3);

C. print 1+(2+3);

D. print (1+2)+3;

E. print(1+2)+3;

In the above examples, statements A–C would give the correct answer, 7, while the last
two would give 3. Statements A and B have nothing special. In statement D, however,
becausethe opening brace is placed immediately after the operator, Perl thinks that this pair
of parenthesescontain all the parameters to be sent to the operator. In this case,1+2 is its
only argument, so 3 is printed. Becausethe print operator returns nothing, thus leaving
the dangling part “+3” for Perl to evaluate. Since this is a uselessaddition operation, a Perl
warning would be displayed if you have warnings enabled. Statement E is the same as D
(recall that whitespace doesnot matter?).

For statement C, becauseyou do not have an opening brace immediately following it, Perl
does not think that there are parenthesesto contain the parameters as in statement D. The
parenthesesin statement C is treated in the normal way, that is, evaluated �rst, and then the
lower -precedenceoperators.

Third, notice that in the operator precedencecharts there are two entries for list operators.
List operators (leftwar d) in this tutorial (and in the perlop manpage) refer to the name of the
list operator concerned. Such a high precedenceallows Perl to know where such operators

4.4 Constructing Your Own sort() Routine 65

occur, so that it knows where to look for their parameters. On the other hand, list operators
(rightwar d) applies to the comma-separatedexpressionsto passto the list operator concerned
as parameters. The extremely low precedenceof this part implies that you do not normally
need to put parenthesesaround the parameters. This part acts �guratively like a basket
containing all the parameters. The only operators having lower precedenceare the operators
not , and, or and xor . For example,

open HANDLE, "$path/.bash_hist ory " or die "Can't open file\n";

Becauseor has a lower precedencethan list operator (rightwar d), the or part is not treated
as part of the operand for the open() operator. In the example, if the open operation fails, it
returns undef , which is interpr eted as false. Becauseshort-circuit evaluation is not possible,
the second part is executed,which outputs the error messageand terminates the script. You
would learn how to open �les later on in this tutorial.

4.4 Constructing Your Own sort() Routine

In the last chapter you have had an overview of using the sort() function to sort a list of
values. I also provided you with a list of common search routines. By now you should have
suf�cient knowledge to understand the rest of the story.

The principle is pretty simple but rather dif �cult to visualize. You override the default sort
criteria by de�ning the ordering criteria in the code block of the sort() function. Two special
variables $a and $b are de�ned in the block. In order to sort a list of values, the sort routine
needsto establish the total ordering of any two arbitrary items in the list. To do so, it assigns
the two items to $a and $b arbitrarily . The block should perform somecomparison operations
in the block basedon thesetwo values. If evaluation of the block yields a scalar value that is
negative, the value held by $a comesbefore that of $b. If the result is positive, the value held
by $b comesbefore that of $a. If the result is zero, then the two values should be considered
equal. The <=> and cmp operators are usually used. The following is an example which
illustrates numeric descending sorting.

Assume the unsorted list is (3, 1, 4) . To sort in descending numerical order, an appropriate
expressionwhich satis�es the above characteristics is

$b <=> $a

The following table illustrates how you can try to verify if the comparison works. 3 -> 1
below means3 comesearlier than 1 in the resulting list.

$a $b $b <=> $a Ordering
3 1 -1 3 -> 1
1 4 1 4 -> 1
3 4 1 4 -> 3

Table4.3: An ExampleIllustrating sort()

Therefore, the ordering 4 ! 3 ! 1 is established.

66 Chapter 4 Operators

Chapter 5

Conditionals, Loops & Subroutines

5.1 Breaking Up Your Code

So long you have been writing your programs in one piece. You are totally allowed to
carry on with this practice, however, lumping everything in one piece is often considered
undesirable for the following reasons:

Easeof maintain A single source �le with tens of thousands of lines is for sure not easy to
maintain. First, navigating around in the source�le is messy— page up and page down keys
are unlikely to be effective for �les of this size and to locate a certain section of code much
traversal is necessary.

Variable Con�icts Variable management is not a trivial affair in practice when the program
is a large one. It is easyfor us to keep track of the variables in use for short programs we have
been writing for now, but shortly when the code basegrows in size, it becomesincreasingly
likely that variable name clash occurs at certain parts of the source code. That is, you use a
variable that is de�ned somewhere elsebut you are unaware of it. This may give rise to some
unexpected behaviour that are dif �cult to debug. Object-oriented programming is a desirable
solution. We would discuss the concepts of scope and packages,which are fundamental to
object-oriented programming that would be covered in the next chapter.

5.1.1 Sourcing External Files with require()

The require() function can be used to source in external �les. It acts in this way — when
execution reachesa require() statement, it �rst checksif the �le has already been require d.
This is to prevent from going into an in�nite �le inclusion loop (that is, A includes B, and B
includes A etc.).

A stack data structure would help you understand what is going on in the Perl �le inclusion
mechanism. Think of a stack as a pile of books lying on your desk. Only two operations are
allowed on a stack, either you place a book at the top of the stack, or you take away a book
from the top of the stack. You are not allowed to insert into or remove from it any books
in the middle. When you run a Perl program, say `A', from the command prompt the stack
comprises only one �le `A' on the stack. When it require s �le `B', `B' would be added to the
top of the stack, and `B' starts execution. When `B' �nishes, it is removed from the top so `A'

67

68 Chapter 5 Conditionals, Loops & Subroutines

is again at the top of the stack. Now say it tries to require itself, that is `A'. Because`A' is
already present on the stack it is not allowed to be added to the stack anymore, in order to
break any potential �le inclusion loops.

The %INC hash variable contains a list of �les included whose key is the path speci�ed as
argument of require() and the value is the complete path. It is used instead of the stack
data structure asmentioned above,but they serve the samefunction. The require() function
checksthis hash to determine if the �le speci�ed already exists on the “�le inclusion stack”.

There is another variable @INCthat stores path pre�xes the Perl �le inclusion system usesto
�nd the �le to be sourced in. You may type the following command at the command prompt
to output the content of @INC:

per l - e 'p r i nt map { "$ _\n " } @I NC; '

On my Linux system, the list of paths is, in ascending order,

cbki hong@cbkih ong: � / publ i c_ht ml > per l - e 'p r i nt map { "$ _\n " } @I NC; '
/ usr / l i b/p er l 5/ 5. 8. 0/ i 686- l i nux- t hr ead- mul t i
/ usr / l i b/p er l 5/ 5. 8. 0
/ usr / l i b/p er l 5/ si t e_per l / 5. 8. 0/ i 686- l i nux-t hr ead- mul t i
/ usr / l i b/p er l 5/ si t e_per l / 5. 8. 0
/ usr / l i b/p er l 5/ si t e_per l / 5. 6. 1
/ usr / l i b/p er l 5/ si t e_per l
.

There are 7 entries. The last entry is a single dot denoting the current dir ectory. Note that the
paths listed are likely to be dif ferent on each system. They are �xed in the Perl installation
process.

require() is an overloaded function serving threepurposes:

? If the argument is a number, it checksif the perl interpr eter version ($]) is greater than
the version speci�ed as the argument. This use is generally used in Perl modules to
specify the earliest perl interpr eter version with which the module can be executed;

? If it is a bareword, that is not enclosedin quotation marks, it is assumedto be the pack-
age name of a module with extension “.pm” (seeChapter 7) and any occurrencesof `::'
are converted to `/' on Unix-variant OSesor `n' on Windows or MS-DOS.The result is a
relative path to a Perl module;

? If the argument is a quoted string, it is treated as the relative path to the �le to be in-
cluded.

For the last two cases,the relative path resulted is appended to eachof the paths in @INCin
turn to form a complete path and require() checksif a �le exists at this location. The �rst �le
that is found is used. As you can see,the system modules dir ectories are searched �rst, and
at last the current dir ectory is searched.

If the search yields an existing �le, the relative path is added to %INC as the key while the
complete path formed as the value. This prevents further inclusion of this �le until it has
�nished execution, then the entry is removed from %INC. If the sourced �le does not return a
true value (asa recapitulation — anything other than 0, an empty string or undef), require()

5.2 Scopeand Code Blocks 69

fails with an error. Perl module authors may utilize this characteristic to abort the scripts
using the module in caseof errors.

The description above is a rewrite of the require() manpage. It is easy to understand and
you are advised to read it for further information. In Chapter 7 you would learn the use()
operator which is a wrapper of require() and is used to load Perl modules.

5.2 Scopeand Code Blocks

5.2.1 Introduction to Associations

Consider this simple assignment statement:

$fruit = "apple";

How would you describe this statement?The string “apple” is assignedto the scalarvariable
named $fruit . Fine, this is how the statement is interpr eted literally , but this description is
not suf�cient as you progressthrough the following chapters. A better and more in-depth
way of expressingthis statement is that a data object with the scalar value “apple” is created,
and the name “fr uit” is now associatedwith this data object. Why do we have to bother with
this expression? Becauseup to now we have been writing programs with each data object
associatedwith one and only one name, which is the name of the variable. However , in this
chapter we would seethat due to scoping rules the samename at dif ferent parts of a program
can be associatedwith dif ferent data objects. This association is also known as a binding .
In the next chapter we would intr oduce to you the possibility of establishing additional
associationsto a data object, which are references.Therefore, from now on you need to have
a clear separation of the data object and its name associations.

5.2.2 Code Blocks

The idea of intr oducing scopesto variable (arrays and hashesapplies similarly) associations
arose from the fact that not all variables need to be valid throughout the lifetime of the
program. This is particularly important in subroutines, which are self-contained reusable
units containing a sequenceof statements.

The scope of an association refers to the region in which the association is visible. Up to the
present, we have been writing very simple scripts with scalar variables, arrays and hashes
which, once created, could be used anywhere in the script. What we have been using are all
global variables. The excessiveuse of global variables is considered a poor programming
practice, becauseas your program becomes increasingly complicated, it is not impossible
that your program may involve dozens to even hundr eds of variables. Perhaps you may
need some of them to be accessiblethroughout the whole script, but this is not generally the
case.In particular , many variables are simply used to store data temporarily , for example, as
a counter in a loop (as you will seelater in this chapter). Intr oduction of scopesis seenas a
cure to the problem, by establishing a scopeand restricting the variable association to within
this scope.

Scopesare de�ned in terms of code blocks , or simply, blocks. A code block simply consistsof
a sequenceof statements that forms a unit, and is delimited by curly brackets (but the mere

http://www.perldoc.com/perl5.8.0/pod/func/require.html

70 Chapter 5 Conditionals, Loops & Subroutines

presenceof f g doesn't necessarilyimply a codeblock — you will seedo fg and eval fg later
in this chapter that look like blocks, but they are not). Code blocks can be nested. In other
wor ds, one code block can appear in another code block. Like this:

Environment A
{

Environment B
{

Environment C
}
Environment B resumes
{

Environment D
}
Environment B resumes

}
Environment A resumes

As you can see,after f a new environment is started. When g is reached,the current environ-
ment terminates, and the parent environment, that is, the environment that was previously
in effect is reinstated. For example, when environment C terminates, environment B will re-
sume. With my() and local() modi�ers that we are going to explore in the next section, you
cancon�ne the lifetime of an associationto within the extent of a scope— when the containing
code block terminates, the associationwould be destroyed.

NOTES

Please interpr et the above statement carefully . Although all associations are
destroyed when the current environment terminates, this does not necessarily
mean the objects themselves are destroyed. This is related to the garbage collection
mechanism in Perl, which will be covered in the next chapter when we come to
references. In particular , if additional referencesto the object exist, the object will
not be destroyed.

5.3 Subroutines

Breaking up your source code into multiple �les is not the only way you can make your
code more manageable. A complex program can be broken into smaller tasks, each of
which carries out a well-de�ned function. Take an online book catalogue served in a
typical library as an example, you can actually split the whole complicated program into
smaller parts. For example, theseare the functions that may be implemented in such a system:

? Search the catalogue by title, author, keywor ds, etc.

? Allows users to check their circulation record

? Allows users to reserveor renew items

5.3 Subroutines 71

? Perhaps to send a reminder to a borrower automatically if he forgets to return the bor-
rowed items on time

You should be able to think of many more, but this already exempli�es a program will be
easier to write and manage if you break it up into smaller and simpler parts, with eachpart
doing its intended task only. This shows how useful subroutines are. A subroutine consists
of a sequenceof statements de�ning an environment. There are two types of subroutines
— named subroutines and anonymous subroutines. Anonymous subroutines are not given
a name while named subroutines are. We shall cover anonymous subroutines in Chapter 6
when we come to the topic of references.From now on, by means of subroutines we refer to
named subroutines.

5.3.1 Creating and Using A Subroutine

In general, before we can call a subroutine, we need to declare and de�ne it. Declaring the
subroutine makes Perl aware that a subroutine of a particular name exists. De�ning means
you explicitly describe what the subroutine does by listing the statements to be executed if
the subroutine is being called.

In general, subroutine declaration and de�nition go together. The syntax used to declare and
de�ne a subroutine is as follows:

sub name [(prototype)] block

block is the subroutine de�nition. It is a code block containing the statements to be executed
when the subroutine is invoked. The rest is the subroutine declaration. It declares a subrou-
tine with the name name. After the subroutine name you may insert an optional prototype
part which contains aconcisespeci�cation of the types of parameters to passto the subroutine.

Here is an example using a subroutine to calculate the sum of a list of scalars (presumably
numeric):

EXAMPLE 5.1

1 #! / usr/b i n/ per l - w
2
3 sub sum (@) {
4 # Thi s subr out i ne t akes a l i st of number s as i nput
5 # and r et ur ns t he sum
6 my $sum = 0;
7 f or my $t mp (@_) {
8 $sum += $t mp;
9 }

10 r et ur n $sum;
11 }
12
13 # cal cul at es 0 + 1 + 2 + . . . + 100 and pr i nt s t he val ue
14 pr i nt sum 0 . . 100; # must be 5050. No doubt .

Lines 3-11 contain the declaration as well as the de�nition of the subroutine sum() . Line 3
tells Perl that you are declaring a subroutine named sum, while lines 4-10are the subroutine

72 Chapter 5 Conditionals, Loops & Subroutines

de�nition. Subroutines have to be declared and de�ned before being called in the script. If
you place the print statement (line 14) before the subroutine declaration, your script simply
won't work as expected. This is becausethe perl interpr eter reads your script sequentially.
If it encounters the token sum before it is declared, Perl will not know sum is a user-de�ned
subroutine asPerl cannot �nd it in the system libraries. That implies you should, in principle,
always put subroutine declarations and de�nitions very early in source �les. As you can
seein the example, the subroutine is put before the source program that calls it. However ,
this may not be convenient sometimes. For example, when you have multiple subroutines
which are inter-dependent on one another, it may not be convenient for you to �nd out
a proper order of declaring the subroutines. Therefore, Perl allows you to make forwar d
declarations, at which point the subroutines are declared but not de�ned. Forward decla-
rations are put at the very top to declare the subroutines, and somewhere later on you give
the de�nitions for the subroutines concerned, which can then be placed in any order. In the
example, in order to make a forwar d declaration of the sum subroutine, it canbemade like this:

sub sum(@);

This statement tells Perl in advance (before parsing the subroutine de�nition) that sum is the
name of a subroutine accepting a variable number of scalarsasarguments, and Perl will know
to look for the de�nition of sum in the later part of the program. The forwar d declaration is
the sameas the declaration line except we replace the block containing the de�nition with a
semicolon.

Although you may not understand the my modi�er and the for loop in the script at the
moment, you may ask a question: why do I have to resort to subroutines if I can implement it
dir ectly with a for loop or a foreach loop? Well, note that the subroutine sum servesa general
purpose. It adds up all the input values and return the result, regardless of the values of the
input. Therefore, this subroutine is highly versatile and �exible — it can be used dir ectly
without modi�cation on any occasionyou would like to evaluate the sum of a list of scalars.
If you write the script asfollows, it can only be used to sum up all the integers between 0 and
100. Whenever you would like to evaluate a sum of something else,you have to rewrite the
code:

cal cul at es 0 + 1 + 2 + . . . + 100 and pr i nt s t he val ue
my $sum = 0;
f or my $t mp (0 . . 100) {

$sum += $t mp;
}
pr i nt $sum;

By writing your code in subroutines, you are enforcing reusability of your code. Code
reusability is important as we wouldn't like to write similar piecesof code again and again.
Later on you will learn how to build reusablemodules where you can put your subroutines
and save them as a �le so that whenever you need to use the subroutines in another project,
you just need to import the module, and the subroutines can be reused in your new project.
This is very convenient. Here is how the sum subroutine canbe readily applied to evaluate the
sum in other situations:

print sum values %score; # print the sum of the values of %score
$avg = sum(@nums)/@nums; # evaluate the average of the values of @nums

5.3 Subroutines 73

Apart from impr oved reusability, subroutines also help make debugging easier. Once we
are certain that a subroutine is correct, we can safely apply it. It is likely that fewer number
of errors would be committed when we combine the subroutines to form an entire program
than writing it without using any subroutines.

Unlike other languageslike C or Java,Perl doesnot support named parameters. All incoming
parameters are combined into one indistinguishable array @. The �rst parameter is thus
$ [0] . Therefore, if you have a mixtur e of arrays and scalarsthe elements of which would be
combined into @. You may use pass-by-referenceto be discussedin the next chapter to avoid
it.

Also, note that the elementsof @ are not copied by value. The elementsof @ are “r eferences”
to the data values. They behave like referencesbut do not look like referencesin terms of
syntax. Basically, the idea is when you modify a value of an element in @, the corresponding
data object will be modi�ed aswell. Consider this example:

sub t est {
$_[2] = 5;
$_[3] = 6;

}

my @a = (1, 2, 3) ;
my $b = 4;
t est (@a, $b) ;
pr i nt j oi n(' , ' , @a, $b) , " \n" ; # 1, 2, 5, 6

Here, when the thir d as well as the fourth element of @ are updated, the corresponding
elements in @aand $b will be modi�ed. What if we replace$b with the literal 4? Now because
the data object cannot be modi�ed, it will be an error. In principle, changing the value of
parameters silently in a subroutine is a bad programming practice, although sometimes you
cannot avoid it. You should document these casesclearly, for example, as comments in the
source�les.

Becausea parameter can be inadvertently modi�ed in a subroutine, in general, you should
not use the elementsof @ dir ectly in scripts. You can use the following technique:

sub sear ch {
my ($myi t em, @myar r ay) = @_;
use $myi t em and @myar r ay t her eaf t er
. . .

}

my @ar r ay = (1, 2, 3);
my $sear chFor = 2;
sear ch($ sear chFor , @ar r ay);

By using the my modi�er , $myitem and @myarray are con�ned to within the search subroutine
only. Here, the elements are copied by value to $myitem and @myarray . Therefore, the tie
between them and the original data objectsno longer exists. Even if you inadvertently modify
the values or $myitem or @myarray , the changeswon't be made to the original data objects.
Mor eover, this emulates named parameter passing in other programming languages.

74 Chapter 5 Conditionals, Loops & Subroutines

A subroutine may return a list of values to the caller. As shown in Example 5.1, this is
achieved by the return function. A subroutine may return a scalaror a list of scalars.Similar
to the casefor incoming parameters, multiple arrays or hashesare combined into one single
list. Again, you may use referencesto circumvent this, though.

5.3.2 Prototypes

Recall that while declaring a subroutine you may put an optional prototype speci�cation. It
describesthe number of as well as the type of parameters in a compact form. The prototype
gives Perl a clue as to how the arguments should be handled. Having an accurate grasp of
the types of arguments expected is important, as illustrated in a mini casestudy below.

The prototype speci�cation comprises a sequence of symbols indicating the type of each
argument. The symbols should look familiar to you, becausethey are the same symbols
which are used to denote scalarvariables, arrays, hashesetc. In front of eachsymbol you may
prepend a backslashn to indicate the element is to be passedby reference. This is covered in
the next chapter.

Symbol Type
$ Scalarvariable
@ Array
% Hash
& Anonymous subroutine
* Typeglob (Referenceto Symbol Table entry)

For example, if the prototype is ($$) , that means the subroutine acceptstwo scalar variables
as parameters. ($$@) implies the �rst two parameters to be evaluated in scalar context while
the remaining parameters would be grabbed by an array variable. Note that you cannot
have something like (@$) as the array variable (or hash variable alike) would take up all the
input parameters. Always bear in mind that multiple parameters, after evaluating in their
respectivecontexts,are combined together to becomeone indistinguishable array @.

A “pr ogrammer ” who claimed to know Perl was asked by his boss to write a subroutine
which inserts a list into an array at a certain position. There is already a splice() function
which can do that for him, so he decided to write a wrapper which calls splice() to do the
job. The boss,asa user, would like to use the subroutine in this format:

insert @array, pos , list

which is identical to the syntax of splice() except without the length parameter. The
“pr ogrammer ” wr ote this:

sub insert {
!!WARNING!! This does NOT work!
my (@myarray, $pos, @list) = @_;
return splice(@myarray, $pos, 0, @list);

}

Without even trying it, he handed it to his boss.The bosstried to use it in this way:

5.3 Subroutines 75

@array = (1, 2, 3);
insert(@array, 3, 4, 5, 6);

It didn't work, and he lost his job. Does that sound too stupid for you? Why doesn't it work?
As I have reiterated a number of times already, becauseall the parameters are combined into
a single list when they are passedto the subroutine. You can't really separatethem back into
the three parameters, becausethe �rst argument is an array which due to its “gr eediness”
would take all the elements passed into the subroutine, leaving $pos and @list unde�ned.
The proper way to do this is:

sub insert (\@$@) {
my ($array, $pos, @list) = @_;
return splice(@$array, $pos, 0, @list);

}

It uses both pass-by-reference with a prototype added to make the types of parameters
expected explicit. The use of @$array causesthe original array to be modi�ed, as we'll cover
in the next chapter. As for the prototype, we indicate the parameters are an array reference,a
scalar and then a list. If a subroutine has a prototype, Perl will try to evaluate the parameters
according to the prototype. Consider the caseif the bossusesthe subroutine in this way:

@array = (1, 2, 3);
insert(@array, @array, 4, 5, 6);

This is identical to the previous case. Note that in the prototype the second parameter
indicates a scalar is expected. Therefore, a scalar context is put around @array which causes
the number of elements in @array to be passedasthe secondparameter, which causesthe list
speci�ed to be appended to the end of the @array .

You can also specify optional parameters. Compulsory parameters are separated from op-
tional parameters by adding a semicolon in between. For example, say you have a subroutine
whose declaration statement is sub mysub ($$;$$); , and you make the following subroutine
call:

mysub @array, "3", 9;

Because@array is evaluated in scalar context, @ is the list (scalar(@array), "3", 9) . The
fourth parameter is empty. By using prototypes you can let Perl check parameter types and
evaluate the parameters in the correct contexts.

A sidenote about subroutine invocation. Traditionally , subroutines had to be pre�xed with
the & symbol when invoked, and the parenthesesare compulsory in this case. For example,
&mysub(@array, "3", 9); When a subroutine is invoked in this way, the prototype is
ignored. Therefore, I recommend not to use the & form in general. A few situations where
you need to use the & form will be covered in the next chapter.

76 Chapter 5 Conditionals, Loops & Subroutines

5.3.3 Recursion

Recursion is moreof a technique rather than a feature of a programming language. It refersto
the practice of tackling a problem through dividing it into smaller sub-problems and tackling
them independently . Each of these sub-problems may also be subdivided if necessary. In
programming languages, recursion is typically achieved through nested invocation of a
subroutine, dir ectly or indir ectly. We'll examine recursion with the help of an example.

A palindr ome is a sequenceof charactersthat is identical regardless you read it in a forwar d
or backward dir ection. For example, “dad” and “sees” are examples of palindr omes. Here,
we tackle the problem of determining whether a given string is a palindr ome. For simplicity ,
we only consider strict palindr omes that are symmetric character by character. Phraseslike
“Madam, I'm Adam” are generally considered palindr omes, but we don't classify them as
such.

There are (at least) two ways to tackle this problem, namely the iterative and recursive
approach. First, we presentthe sourceprogram for the iterative approach:

EXAMPLE 5.2 Palindr ome

1 #! / usr/b i n/ per l - w
2
3 # Det er mi ni ng whet her a gi ven st r i ng i s a pal i ndr ome.
4 # (I t er at i ve appr oach)
5
6 sub i sPal i ndr ome($) ;
7
8 pr i nt " Ent er a st r i ng > " ;
9 chomp(my $st r = <STDI N>);

10 i f ($st r ne ' ') {
11 pr i nt " $st r i s " , i sPal i ndr ome($st r)? " " : " not " , " a pal i ndr ome. \n " ;
12 } el se {
13 pr i nt " The st r i ng shoul d not be empt y! \n" ;
14 }
15
16 sub i sPal i ndr ome($) {
17 my $st r i ng = $_[0] ;
18
19 my $ct r _l = 0;
20 my $ct r _r = l engt h($st r i ng) - 1;
21
22 whi l e ($ct r _l <= $ct r _r) {
23 # To do case- i nsensi t i ve compar i son, conver t bot h t o l ower case i f {

appl i cabl e
24 my $l ef t char = l c subst r ($st r i ng, $ct r _l , 1) ;
25 my $r i ght char = l c subst r ($st r i ng, $ct r _r , 1);
26 i f ($l ef t char ne $r i ght char) {
27 r et ur n 0;
28 } el se {
29 $ct r _l ++;
30 $ct r _r - - ;
31 }

5.3 Subroutines 77

32 }
33 r et ur n 1;
34 }

Then the recursive approach:

1 #! / usr/b i n/ per l - w
2
3 # Det er mi ni ng whet her a gi ven st r i ng i s a pal i ndr ome.
4 # (Recur si ve appr oach)
5
6 sub i sPal i ndr ome($) ;
7
8 pr i nt " Ent er a st r i ng > " ;
9 chomp(my $st r = <STDI N>);

10 i f ($st r ne ' ') {
11 pr i nt " $st r i s " , i sPal i ndr ome($st r)? " " : " not " , " a pal i ndr ome. \n " ;
12 } el se {
13 pr i nt " The st r i ng shoul d not be empt y! \n" ;
14 }
15
16 sub i sPal i ndr ome($) {
17 my $st r i ng = $_[0] ;
18
19 # A st andal one char act er or an empt y st r i ng ar e by def i ni t i on symmet r i c .
20 # Thi s si gni f i es t he deepest r ecur si on st ack possi bl e.
21 i f (l engt h($st r i ng) <= 1) {
22 r et ur n 1;
23 }
24 # Her e, what we need t o do i s t o exami ne t he f i r st
25 # and l ast char act er , and i nvoke a new i sPal i ndr ome
26 # t o deduce whet her t he st r i ng i n t he mi ddl e i s a pal i ndr ome.
27 my $l ef t char = l c subst r ($ st r i ng, 0, 1, " ");
28 my $r i ght char = l c subst r ($st r i ng, - 1, 1, " ") ;
29 r et ur n $l ef t char eq $r i ght char && i sPal i ndr ome($ st r i ng);
30 }

The only part of concern is the subroutine de�nition of isPalindrome() . In the iterative
approach, two pointers are maintained which initially point to the �rst and the last character,
respectively. A loop is set up which iterates as the pointers move towards eachother. When
an unmatched character pair is found the value 0 is returned, which signi�es the string
is not a palindr ome. Finally, when the positions of the left pointer and right pointer are
swapped, that implies the entire string has already been scanned through and all character
pairs matched (or 0 would have been returned), so we can then conclude the string is a
palindr ome.

The logic behind the recursive scheme,however, seemsto be cleaner and more intuitive. In
the iterative approach, a single isPalindrome() invocation tackles the whole of the problem.
However , the recursive approach suggests to break this problem into multiple levels. At
each level, we merely compare the �rst and last character of the incoming string. The string
in the middle is passed to a new invocation of isPalindrome() to deduce whether it is a
palindr ome. In other wor ds, we de�ne that a palindr ome is one whose �rst and last character

78 Chapter 5 Conditionals, Loops & Subroutines

are identical and the substring in the middle is also a palindr ome. If both conditions are
satis�ed we conclude the string is a palindr ome; otherwise, it isn't.

Lines 21-23in the recursive example handles the casewhen the incoming string is a single
character or an empty string. In recursive schemesone always need to consider the caseat
which point recursion should stop. Recursion should not be allowed inde�nitely (and in fact,
you should avoid recursions of many levels, say possibly 5000levels deep becausein practice
the stack size is limited and you actually create an entry on the call stack as you recurse.
Exceedingthe limit results in a stackover�ow error). Note that asrecursion proceeds,the �rst
and last character are being taken off of the string before passing to a new isPalindrome()
invocation. Therefore, there must be a level at which the incoming string is either a single
character or empty, depending on the number of charactersin the original string speci�ed by
the user. Also note that the ordering of the two conditions on line 29 is signi�cant. Because
if we �nd that the border character pair doesn't match, we can already claim the string is
not a palindr ome without having to test the string in the middle. I used the short-circuiting
property of && to achieve this. If you swap the two conditions, then recursion must always
have to proceedto the deepest level and the test is only carried out just before you exit from
eachlevel, which is just a waste of time.

Depending on the problem nature, recursion may be a better solution compared with an
iterative approach. For example, a program which searches through a dir ectory structure
(say, search for certain �les on the hard disk) is nearly always implemented by a recursive
scheme because dir ectory structure is hierarchical, or in other wor ds, nested by its very
nature. Becausethe number of nested levels is not known in advance, an iterative schemeis
unlikely to be appropriate.

5.4 Packages

When you split your code into multiple �les, Perl provides a nice mechanism to ensure that
variables in dif ferent parts of your program do not clash. The mechanism is to divide your
program into dif ferent namespaces. The idea is very simple — each namespacehas a label
which uniquely identi�es the namespaceand we prepend to variable names the label so that
we can dif ferentiate in casetwo variables in two namespaceshappen to have the samename.
C++ usesthe notion of namespace,while in Perl terminology a namespaceis called a package
instead.

Any variables not explicitly contained in any packagesbelong to the main package.Therefore,
all variables we have been using in fact belong to the main package. By declaring additional
packageswe create shields so that variables in dif ferent packageswould not interfer e with
eachother. Packagesare fundamental to object-oriented programming becauseeachobject is
intended to be a self-contained unit.

5.4.1 Declaring a Package

A package extends from the package declaration up to the end of the enclosing code block,
the closing bracket of eval() (seechapter ??) or the end-of-�le (seethe perlmod manpage),
whichever comes�rst. To declare the start of a package,put

5.4 Packages 79

package package name;

Usually package declarations are placed at the beginning of source �les to ensure that all
variables in the �le are protected. For example,

#!/usr/bin/perl -w

package Apple;

Package extends to the end of the file

If a package declaration is placed inside a code block, the package extends to the end of the
code block:

#!/usr/bin/perl -w

`main' package
{

package Apple;

package 'Apple' extends to the end of the block
$var = 3;

}
`main' package

To avoid any misconceptions that may arise as you read on, I would like to remind you
that packagesappearing inside code blocks, such as in the example shown above, continue
to exist after the block is closed. Always bear in mind that packagesare only intended to
prevent clashing of namespace inadvertently . It has nothing to do with scoping. In the
above example, the variable $Apple::var still has the value of 3 after the containing block
terminates. This is not the casefor local() variables, though, which we will come to shortly.

Note that a package may be declared within the extent of another package. As illustrated in
the above example, the `Apple' package is declared within the extent of the `main' package.
Therefore, you can declare an `Orange' packagewithin the extent of the `Apple' package,and
eachpackageprotects the variables within its respectiveextent. By convention, the �rst letter
of a packagename is capitalized, except the `main' package.

5.4.2 PackageVariable Referencing

If you omit the package name when referencing a variable, e.g. $somevar , it refers to the
variable inside the current package. This also applies to variables in the main package.
Therefore, by not explicitly declaring any packages in previous chapters we have been
referring to variables in the current package,that is, the main package.

If you need to refer to a packagenot contained in the current package,you need to qualify the
variable with the packagename prepended, with :̀: ' as the packageseparator. Therefore, to
refer to a scalar variable $var in the apple namespaceyou need to write $apple::var . If the
package name is empty but contains the package separator, e.g. $::var , the main package is

80 Chapter 5 Conditionals, Loops & Subroutines

assumed.

Becauseyou need to explicitly qualify a variable with the package name if you have to refer
to it in another package, you will not modify it inadvertently unless that is your intention.
That is exactly how namespaceswork.

There is also an old syntax of using a quote instead of double colon for referring to package
variables, for example, $orange'var . This syntax may be deprecated in futur e versions of
Perl. However , becauseit will be interpolated in double-quoted strings, you should beware
of strings such as “ $people's pen”. You should disambiguate by putting a pair of curly
bracesaround the variable name, such as“ $f people g's pen”.

5.4.3 PackageVariables and Symbol Tables

Note:Dif�cult materialahead.Understandingof this sectionis not compulsoryfor practicalPerl programming
nowadays.You maywish to deferthis sectionuntil you needit.

Each package in Perl maintains its own symbol table. A symbol table keeps track of a list
of symbols de�ned in the current package and their memory locations at which they can be
found. For non-lexical variables (that is, those declared with the my modi�er) Perl needs to
keep track of them becausethey are not con�ned to any scopes. You may accessthe symbol
table of a package through a hash whose name is the name of the package, followed by two
colons. For example, the hash representing symbol table of the main package is %main:: . The
keys of the hash are the namesof symbols de�ned in the package. The corresponding values
is a scalar representing an internal data structure of Perl known as a typeglob which in turn
holds the referencesto the actual symbols.

To help you understand it, consider the @INCarray that we described earlier in this chapter.
This array is one of the prede�ned variables in Perl that is automatically listed in the
symbol table of the main package. Therefore, there exists a key `INC' in %main:: , that is,
$main:: f 'INC' g. The value is a typeglob which holds a list of referencesof symbols with the
name INC, that is, @INCand %INC. The typeglob is representedby *main::INC . The typeglob
has a number of slots, each of which stores the referencesof a dif ferent type such as scalar,
array, hash, anonymous subroutine, �lehandle and typeglob (which is just a reference to
itself). If there isn't a symbol of one type, the corresponding slot is simply null. You can
accessthe referenceof @INCand %INCthrough the symbol table with a so-called *foof THING g
syntax. In this example, that are *main::INC f ARRAYg and *main::INC f HASHg respectively.

Typeglobs were mainly used for parameter passing in earlier versions of Perl when references
were not yet in the Perl language. In the next chapter you will be taught on how to use pass-
by-referencefor parameter passing. You may wonder why I need to mention typeglobs at all
if it is no longer actively used. First, in order for you to understand how local or package
variables work, you'll need to know what a symbol table is. And, becausethe entries in a
symbol table are representedby typeglobs, it is dif �cult for me not to mention typeglobs at all.

5.5 Lexical Binding and Dynamic Binding

We have already learned how to de�ne environments in a program by establishing code
blocks in Section 5.2.2. Subroutine de�nition is also placed inside a code block so it also

5.5 Lexical Binding and Dynamic Binding 81

de�nes an environment in itself. However , I have not yet explained how you can restrict an
associationto within a certain scope.Recall that all variables we have beenusing are package
variables. Once declared, package variables continue to exist in the symbol table as long
as the program is running. Before we go into the details of the two types of bindings with
respectto associations,let us �rst examine the general concept of referencing �rst.

Let's executethis program on your system:

1 f or (keys %mai n: :) {
2 pr i nt $_, " => " , $mai n: : { $_} , " \n " ;
3 }
4
5 $abc = 3;

The generated lines that are of interestat this point are shown below, with others omitted:

. . .
st di n => * mai n: :s t di n
ARGV => * mai n: :A RGV
I NC => * mai n: :I NC
ENV => * mai n: :E NV
abc => * mai n: :a bc
. . .

The above code dumps the content of the symbol table. On the left of the arrow are the
names of the symbols, while on the right are the corresponding typeglobs. What appears
to be interesting is that an entry for abc exists in the symbol table, regardless of the fact
that the statement which assigns 3 to $abc has not yet been executed at the instant the
symbol table dump is made. The reason is that a compilation step, despite invisible to
users, was performed before the actual execution which scans the whole program for
package variables which are then added to the symbol table. Therefore, before the program
is actually executed the symbol table has already been constructed. As noted previously,
a symbol table keeps track of the symbols that appear in the program. By doing so, the
runtime environment (for example, the perl interpr eter) prepares a list of symbols at an
early point in time which facilitates it to arrange for storage spacein the memory and, most
importantly , to prepare for referencing operations that occur during execution of the program.

Whenever a symbol appears in a program, a referencing operation is required to be carried
out during execution to deduce which data object is associatedwith the given symbol. For
example, when the statement $abc = 3 in the program above was executed, the runtime
environment needs to �nd out which data object is associatedwith the scalar variable $abc .
It may happen that there are multiple scalar variables of the name abc but the name should
be associatedwith exactly one of them at any instant. The goal of a referencing operation is
to locate this association.

Referencing has been made complicated becauseof the presenceof scopes. Without scopes,
referencing is easybecausethere can be only one variable of a certain name in eachpackage.
For example, throughout the duration of a program there can be one and only one scalar
variable $Apple::var in the Apple package. $Orange::var is already a dif ferent scalar
variable and do not interfer e with $Apple::var at all. Therefore, throughout the program all
referencesto $Apple::var always refer to the samedata object. However , this may not apply

82 Chapter 5 Conditionals, Loops & Subroutines

to those variables which are con�ned by scoping rules. In Perl, two major types of scoping
rules are supported, namely lexical scoping and dynamic scoping. Both scoping systems
base on de�nition of scopessuch as code blocks, but the way referencing is performed is
dif ferent.

Most modern programming languages only support lexical scoping. An association that is
lexically scoped is visible from the point in the environment in which it is de�ned, and all
environments that appear inside the extentsof that environment, until when another lexically
scoped variable with the same name appears in those environments. In Perl, a variable
declared with the my modi�er is lexically scoped. Consider this example:

1 my $a = " Hel l o " ;
2 {
3 $a . = " Wor l d\ n" ;
4 pr i nt $a; # Hel l o Wor l d
5 my $a = " Bye! \n " ;
6 pr i nt $a; # Bye!
7 }
8 pr i nt $a; # Hel l o Wor l d

When execution proceedsto line 3, Perl needs to �nd out which data object $a refers to. At
this instant, the current environment, that is the code block between line 2 and 5, is known as
the local referencing environment . Perl �rst �nds out that up to this point there is not any
lexical variable with the name a in the local referencing environment. As local referencing
fails, the referencing operation proceeds to search for one in the nonlocal referencing
environments , by proceeding all the way up through parent environments. Here, we �nd
a lexical $a in the parent environment, and the data object associatedwith that variable is
used. Therefore, the string “World nn” is appended to the scalarvalue held by that data object.

However , on line 5 a new lexical $a is declared at this point. Therefore, referencing operation
performed at line 6 resolves to this lexical. Note that the lexical in the parent environment
is untouched. It is described as being hidden . When the code block terminates, all local
associations are destroyed. Becauseof the reference-basedgarbage collection mechanism,
the data object associatedwith the lexical on line 5 is also destroyed. Lexicals that were once
hidden are visible again. Therefore, the last print() outputs “Hello World”.

my() expectsa scalar or a list as its argument. We have seena scalar used as the argument in
the examples. Using a list asan argument with optional assignment looks like this:

my ($a, $b) = ('Hello', 'World');

If the variable list is not assigned,then they are given the values of undef .

Lexical scoping models are recommended for several reasons. First, the use of lexical
variables is faster compared with dynamically scoped ones. That is becauselexical scoping
can be solely determined from the nesting of code blocks, which is already �xed during
the compilation phase. Therefore, referencing of lexical variables can be performed during
compilation instead of at runtime. Dynamic scoping, on the other hand, also takes into
account the dynamic factor of subroutine invocations. In Perl, local() variables are dy-
namically scoped. As the use of dynamically scoped variables share similar problems as
global variables in other programming languages, and the scope is dependent on the call

5.5 Lexical Binding and Dynamic Binding 83

stack which is determined by how the program calls subroutines at runtime, they makes
debugging more dif �cult, and are relatively slower.

my variables are never listed in the symbol table. This fact is important asyou go on and learn
how to use typeglobs.

Dynamic scoping, on the other hand, is based on the call stack instead of nesting of envi-
ronments. In Perl, local() variables are dynamically scoped. Thesevariables are package
variables and appear in the symbol table of the respective packages. The idea is, when a
local variable is declared, the current value as can be accessedthrough the symbol table is
saved temporarily in a hidden stack, and a new data object is created to hold the new value.
When the current environment terminates, the current symbol table entry is removed, and
the value that was previously saved is reinstated. Consider this example:

1 sub gr eet i ng {
2 pr i nt $a; # Bye!
3 }
4
5 $a = " Hel l o " ;
6 {
7 $a . = " Wor l d\ n" ;
8 pr i nt $a; # Hel l o Wor l d
9 l ocal $a = " Bye! \n" ;

10 &gr eet i ng;
11 }
12 pr i nt $a; # Hel l o Wor l d

This is similar to the example I used above to intr oduce myvariables in Perl, exceptnow local
is used and the secondprint is put in a subroutine. On line 9, the original symbol table entry
for $a (with the scalar value “Hello World”) is replaced with a newly created data object
whose value is “Bye!”. In the subroutine greeting() , because$a cannot be resolved in the
local environment, the symbol table entry is used, and therefore “Bye!” is displayed. When
the block terminates, the original symbol table entry saved is reinstated. Therefore, the value
print ed is “Hello World”.

There are a few points to note here. Here is a slightly modi�ed version of the above program
for illustration:

1 my $a = " Hel l o " ;
2
3 sub gr eet i ng {
4 pr i nt $a; # Hel l o Wor l d! ! ! !
5 }
6
7 {
8 $a . = " Wor l d\ n" ;
9 pr i nt $a;

10 l ocal $: :a = " Bye! \n " ;
11 &gr eet i ng;
12 }
13 pr i nt $a;

84 Chapter 5 Conditionals, Loops & Subroutines

When you run this program, you would �nd that all threeprint() result in the string “Hello
World” being displayed. The reason is that during compilation phase all referencesto $a
within the lexical scopehave already been associatedwith the lexical variable. If you swap
the positions of the lexical variable declaration and the subroutine, you will �nd that the
local() ized packagevariable $a is print ed in this case.

Also, asshown on line 10,when you try to local() ize a variable when a lexical variable of the
same name exists, you have to explicitly use the double-colon form to indicate the package
symbol table entry. That is because,as explained, $a is tied to the lexical variable and trying
to local ize a lexical variable is a runtime error.

Apart from a packagevariable, you can local ize a member of composite type. For example,
you can have

local $ENV{'PATH'} = '/home/cbkihong/bin ';

which causesthe original value to be savedand temporarily replacedby the new given value.
When the environment terminates the original value is restored.

Becauseof potential confusions that may arisewhen you use local variables, one is generally
not recommended to use local variables.

5.6 Conditionals

A programming language is practically not useful if the statements are only allowed to run
from the very �rst line to the last. Therefore, in this section we are going to talk about loops
and conditionals.

You have used the comparison and logical operators in the previous chapter. By using
conditionals, you can specify a block of code to be executed if a particular condition (test) is
satis�ed. This is what conditionals exactly do.

The if-elsif-else structure is the most basicconditional structure. The general form is:

if (EXPR1) BLOCK1
[elsif (EXPR2) BLOCK2] ...
[else BLOCKn]

The parts in square brackets denote the optional parts. The if-elsif-else structure works
as follows: if EXPR1evaluates to true, statements in BLOCK1 are executed,and the remaining
elsif or else parts are bypassed. Otherwise, Perl jumps to the next elsif or else part, if any.

Perl goesto the elsif part if the previous condition is not met (i.e. false). If EXPR2evaluates
to true, BLOCK2 is executed and the remaining parts are bypassed. There can be as many
elsif parts asyou like, and Perl will test eachcondition successivelyuntil any test evaluates
to true. The else part is placed at last, handling the situation when all the previous tests
failed. The BLOCKn will be executed in this situation.

5.6 Conditionals 85

Figure 5.1 presents the �owchart showing the sequence of actions performed inside an
if-elsif-else conditional structure.

Figure5.1: If-elsif-elseFlowchart

The following is a simple program in which the user inputs a number, and the program
deduceswhether it is an even number, odd number or zero.

EXAMPLE 5.3

1 #! / usr/b i n/ per l - w
2
3 $numt ype = " " ;
4
5 pr i nt " Pl ease ent er an i nt eger > " ;
6 chomp($num = <STDI N>);
7
8 i f ($num % 2 == 1) {
9 $numt ype = " an odd number . " ;

10 } el si f ($num == 0) {
11 $numt ype = " zer o. " ;
12 } el se {
13 $numt ype = " an even number . " ;
14 }
15
16 pr i nt $num . " i s " . $numt ype . " \n " ;

This program has all the three parts, forming a complete if-elsif-else structure. Because
0 is customarily considered neither odd nor even, we have taken this special case into
consideration. First it tests if the number is odd by checking if the modulus (remainder) is 1.
If this is true, line 9 would be executed. Otherwise, it jumps to line 10 to test if the number is
0. If this test fails again, we know for sure that it should be an even number.

86 Chapter 5 Conditionals, Loops & Subroutines

Perl also hasan unless conditional structure. The following example illustrates its use:

1 #! / usr/b i n/ per l - w
2
3 pr i nt " Pl ease ent er your age > " ;
4 chomp($i n = <STDI N>);
5 unl ess ($i n < 18) {
6 pr i nt " You ar e an adul t . \n " ;
7 } el se {
8 pr i nt " You ar e l ess t han 18 year s ol d. \n " ;
9 }

If you use unless , the senseof the test is reversed. Line 6 is executed if the expressioneval-
uates to false . If the expression evaluates to true , Perl executesthe else part. In fact, the
unless structure is somehow redundant. However , Perl gives you the �exibility to do your
job in alternative ways. That is an exempli�cation of the Perl motto “There Is MoreThanOne
ToDo It” . You can replaceline 5 with

if (!($in < 18)) {

... or even

if ($in >= 18) {

to achieve the sameeffect.

5.7 Loops

Sometimeswe would like a mechanism for executing a sequenceof statementsrepeatedly for
a speci�c number of times or under a particular condition. A loop is the answer. First, I will
intr oduce the for loop.

5.7.1 for loop

The for loop is inherited from C/C++. The general syntax is

for ([init-expr] ; [cond-expr] ; [loop-expr]) BLOCK

First, the initial expression init-expr is executed. In this part usually a variable would
be de�ned that acts as a counter to keep track of the number of times executed. Then the
conditional expression cond-expr is evaluated. If the expressionevaluates to anything other
than undef , empty string (“”) or the numeric 0 (i.e. the threescalar values that are de�ned as
false), the BLOCKis executed. After the BLOCKhas beenexecuted, the loop-expr is evaluated.
Then, a new cycle starts, and the cond-expr is evaluated again until the cond-expr evaluates
to false, then the loop terminates.

5.7 Loops 87

Figure5.2: for-loopFlowchart

The processdescribed above could best be visualized using a block diagram as shown in
Figure 5.2.

We would now write a script that prints a special pattern on the screen. It consists of two
isoscelestriangles pointing vertically towards eachother.

EXAMPLE 5.4 Doub le Triangles

1 #! / usr/b i n/ per l - w
2
3 pr i nt " Pl ease i nput t he wi dt h of t he base (1- 50) > " ;
4 chomp($i nput = <STDI N>);
5 i f ($i nput < 1 or $i nput > 50) {
6 di e " I nput must be i n t he r ange (1. . 50) ! \n " ;
7 }
8
9 f or ($t r end = 0, $i = $i nput ; $i <= $i nput ; ($t r end) ?($ i+ =2) : ($i - =2)) {

10 i f ($i == 1 or $i == 2) {
11 $t r end = 1;
12 }
13 pr i nt " " x (($ i nput - $i) / 2) . " * " x $i . " \n " ;
14 }

In the example, lines 5-7 handles the caseif the user enters a number out of the range (1..50).
In particular , the die() operator on line 6 outputs the error messagespeci�ed to the standard
error (STDERR),which is the screenby default, and then terminate the program.

On lines 9-14 I used the for loop to print the asterisks line by line. The $i variable stores
the number of asterisks to be printed at each cycle, while $trend keeps track of whether
you decreaseor increasethe number of asterisks by 2 after each loop. Initially 0 is assigned
to $trend , so that the conditional operator decrements $i by 2 after each loop. The upper
triangle is completed when $i takes the value of 1 or 2, depending on whether the user has
entered an odd or even number. At this point I assign 1 instead, so that in the next loop $i is
incremented by 2. This loop is repeated until when $i is greater than the width of the base

88 Chapter 5 Conditionals, Loops & Subroutines

speci�ed. In this case,the loop stops.

Note that although line 9 looks a bit complicated and strange, this is grammatically correct.
The init-expr part consists of two expressionsseparated with a comma operator. As you
have learned from the previous chapter, both expressionswould beevaluated while returning
the value of the last expression.However , this return value is actually ignored in this case.

5.7.2 while loop

A for loop is not the only type of loop structure available. Another form of the loop structure
I would like to mention is the while loop. This structure is simpler compared with for loop,
and the syntax of which is as follows:

while (cond-expr) BLOCK

How does it work? First, cond-expr is evaluated. If it evaluates to true, BLOCKis executed.
After that cond-expr is tested again, and the loop just goes on inde�nitely until cond-expr
evaluates to false.

5.7.3 foreach loop

Now I would intr oduce to you another loop structure that works closely with the list data
structure. The general syntax of a foreach loop is asfollows:

foreach [[my] $loop var] (list) BLOCK

In every cycle of a foreach loop, an element from the speci�ed array or list (list) is retrieved
and assigned to a temporary local() variable $loop var , and BLOCKis executed. Looping
continues until all the elements in list have beenenumerated. For example, if we would like
to check if a particular element exists in an array, we can use a foreach loop and iteratively
checksif the returned element matchesthe data we are looking for, as in the example below:

1 #! / usr/b i n/ per l - w
2
3 $sear chf or = " Schuber t " ;
4 @composer s = (" Mozar t " , " Tchai kovsky " , " Beet hoven" , " Dvor ak" , " Bach" ,
5 " Handel " , " Haydn" , " Br ahms" , " Schuber t " , " Chopi n");
6 $pr ompt = " $sear chf or i s not f ound! \n " ;
7 f or each $name (@composer s) {
8 i f ($name eq $sear chf or) {
9 $pr ompt = " $sear chf or i s f ound! \n " ;

10 l ast ;
11 }
12 }
13 pr i nt $pr ompt ;

As mentioned previously, we should have used a hash in the �rst place, but we use a loop
to demonstrate the use of foreach loop anyway. In this example, each of the names in
@composers is compared with “Schubert” in turn, the name we are looking for. The loop

5.7 Loops 89

keeps on going unless the name speci�ed is found in the list, or all the elements have been
exhausted without resulting in a match. It is apparent that “Schubert” is in the array, so we
must always obtain a positive result.

In each foreach cycle, an element from the speci�ed list or array is assigned to the scalar
variable speci�ed. If the variable is omitted (note that $loop var is an optional argument), it
defaults to $. This is a special variable that Perl, in general, assignstemporary data to if no
scalar variable is speci�ed in certain operations. This special variable is used quite often in
later chapters, like regular expressions,to shorten the length of the script. However , in my
opinion, although you are allowed to make your scripts shorter by omitting specifying certain
variables in Perl, it may cause your script to look more cryptic than necessary. However ,
many Perl programmers use such shorthands, and you should know how to interpr et them,
and this is the reasonwhy I cover this here.

The variable $loop var is in the form of a local() variable. However , you may want to
restrict it to static scoping (for reasonswhich are to be covered in a later part of this chapter).
In this case,put my after foreach , asshown in the syntax above.

Some Perl programmers are lazy to type 7 characters for foreach so you may use the
shorthand for instead. Perl can dif ferentiate whether you use the for loop or foreach loop
from the syntax.

Also notice line 10. The last statement is one of the loop control statements. A loop control
statement controls the execution of the loop. In the next subsection we would explore the
loop control statementsavailable in Perl.

5.7.4 Loop Control Statements

Loop control statementscan only be used inside loops to control the �ow of execution.

The next statement causesthe rest of the code block to be bypassed and starts the next loop
iteration.

? For for loops, loop-expr is evaluated, and then cond-expr is evaluated;

? For while loops, cond-expr is evaluated;

? For foreach loops, the next element is taken from list ;

The last statement causes the rest of the code block to be bypassed and the loop then
terminates. Execution starts at the statement immediately following the BLOCK.

The redo statement causesthe rest of the current code block to be bypassed and the block is
re-executed. Conditional expressionsand loop expression (for loop) are not evaluated. The
content of the loop variable is retained for foreach loops. This statement is seldomly used
in practice. A clever use is to concatenate lines in a �le with line continuation characters.
Someprogramming languages have the notion of line continuation characters which allow

90 Chapter 5 Conditionals, Loops & Subroutines

a lengthy line to be split over multiple lines. Those languages usually do not have statement
termination indicators (like ; in Perl) and generally use newlines to denote the end of a
statement. In order to split a lengthy line over multiple lines, they require a speci�c line
continuation character before each intermediate line break that should not be considered the
end of a statement. In this way, all the lines terminating with a line continuation characterare
concatenated until a newline without any line continuation characters occur. For example,
given the following input �le:

. /c onf i gur e - -w i t h- f eat ur es=huge \
- -w i t h- compi l edby ="B er nar d Chan" \
- -e nabl e- mul t i byt e - -e nabl e- xi m - -e nabl e- f ont set \
- -e nabl e- gui =gt k - -w i t h- gt k- pr ef i x=/u sr

(This is thecon�guration commandbeforecompilationof theGVIM editoron my Linux system)

The following code snippet can be used to concatenatesuch lines into one:

1 open FI LE, " <command. t xt" ;
2 whi l e (def i ned($l i ne = <FI LE>)) {
3 chomp($l i ne) ;
4 i f ($l i ne =� s/ \s * \ \ $/ /) { # r emove l i ne cont i nuat i on char act er i f any
5 # col l apse mul t i pl e spaces i nt o one
6 ($ _ = <FI LE>) =� s/ ˆ \ s* / / ;
7 $l i ne . = $_;
8 r edo unl ess eof(FI LE);
9 }

10 # no mor e cont i nui ng l i nes - - - pr ocess combi ned $l i ne
11 pr i nt $l i ne;
12 }
13 cl ose FI LE;

This example is taken from the perlsyn manpage with little modi�cation and comments
added, becauseit usescertain Perl language featuresthat have not beentaught yet (like regu-
lar expressions).

http://www.perldoc.com/perl5.8.0/pod/perlsyn.html#Loop-Control

Chapter 6

References

6.1 Introduction

We have covered the use of scalars in the �rst few chapters of this tutorial. However ,
we haven't covered a very important type of scalar yet - references. Perl references are
prevalently used nowadays, thanks to the of�cial support of object-oriented programming
starting from Perl 5. You need to have a good command of referencesbefore heading towards
the topic of object-oriented programming.

References look cryptic from the start. It resembles the concept of “pointers” in C/C++,
and “har d links” in Unix �lesystems (you may �ip to Appendix C for a crash course on
basic Unix). The use of references is in some sense a peculiar concept in programming.
However , it turns out to be very useful in parameter passing and serves as the basis for
constructing complex data structures in Perl (and therefore, it is central to object-oriented
programming in Perl). Towards the end you will also learn to use typeglobs in your
programs. Typeglobs were used to pass data structures to and from subroutines when
referenceswere not yet available in earlier versions of Perl. Today, they have been largely
supersededby references,and the sectionon typeglobs is presentedfor your information only.

6.2 ReferencesPrimer

A reference is a special form of scalar variable that stores the location (address) of a data
structure. Fundamentally, when something needs to be stored in the memory, a memory
address is required. It is only with the knowledge of the addressof the object that we can
accessit. This is synonymous with your postal addressin mail delivery , or your IP address
for packet routing on the Internet.

6.2.1 Creating a Reference

To createa reference,pre�x the n operator to the data object. For example,

$a = \100;

This createsa reference variable $a that points to a newly created data object which holds
the literal 100. If the memory addressof the data object is stored is at location 0x8101B8C,
the reference $a would have an rvalue of 0x8101B8C. The following diagram is a pictorial

91

92 Chapter 6 References

representation of the situation. Note that the memory addressvaries from system to system,
and becauseof the relocatable nature of processes,the addressmay probably vary on every
execution. I just made it up here for the purpose of illustration.

Figure6.1: ScalarReference

In the diagram, the association is represented by a solid arrow. The real data object is
represented by a cloud shape while the reference by a rectangle. You can further create a
reference$b which points to $a, by

$b = \$a; # scalar reference

Figure6.2: A Chainof ScalarReferences

Apart from referencesof scalars,you can also createreferencesof hashes,arrays, subroutines
and typeglobs. Subroutine reference (or code reference/anonymous subroutines) and
typeglob referencewill be revisited afterwards.

$arrayref = \@array; # array reference
$hashref = \%hash; # hash reference
$coderef = \&subroutine; # subroutine reference
$globref = *typeglob; # typeglob reference

Though appearing awkwar d to do so, you may createa chain of referencesin one go without
involving intermediate variables by pre�xing multiple backslashesto the data object. For
example, the above two statementsare functionally equivalent to:

$b = \\100;

Becareful of enumerated lists asa special case!As indicated on the perlr ef manpage, taking a
referenceof an enumerated list evaluates to a list of referencesof the list elements:

@list = \($a, $b, $c); # Actually (\$a, \$b, \$c)
@list2 = \($a, @b); # Actually (\$a, \$b[0], \$b[1], ...)
Actually \$c. Remember list operator in scalar context?
$scalarref = \($a, $b, $c);

6.2 ReferencesPrimer 93

Recall that in an enumerated list all arrays or hashesare expanded to the constituent elements
to form a single list. To create a referenceto an enumerated list dir ectly without creating an
intermediate array �rst, which is called an anonymous array, enclosethe list in [] instead:

$listref = [$a, $b, $c];

Similarly , to construct an anonymous hash, enclosethe key-value pairs in f g instead:

$hashref = {
'key1' => 'value1',
'key2' => 'value2',
'key3' => 'value3',

};

Becausea reference is simply a scalar value, elements of an anonymous array (or values of
anonymous hash) can also be a hash referenceor array reference. In this way, we will be able
to implement some complex data structureseasily, which we shall explore later in this chap-
ter aswell asin the next chapter when I intr oduce object-oriented programming. For example,

$hashref = {
'values' => [

'a',
'b',
'c',

],
'device' => 'screen',
'options' => {

'indent' => TRUE,
'color' => '0xFFFF00',

},
};

which createsan anonymous hash containing threekey-value pairs. The values key maps to
an anonymous array, while the options key maps to an anonymous hash. The device key
maps to a simple scalarstring.

References to subroutines behave like functors in C. They can be created in two ways.
The �rst way is to prepend n& to the name of the subroutine. The & is required when you
are referring to the name of a subroutine. For example, if you have a subroutine named
somesub() you can take a referenceto it by n&somesub.

You can also create an anonymous subroutine dir ectly, by using sub without specifying the
name of the subroutine:

$subref = sub {
This is a subroutine

};

94 Chapter 6 References

6.2.2 Using References

If you try to print() a reference variable, the type as well as the memory location will be
displayed, for example CODE(0x814f3a0) for an anonymous subroutine.

Once you have the referencevariables, you may dereference them to accessthe underlying
data objects.To dereferencea referencevariable, simply put a pair of curly bracesaround the
referencevariable and prepend it with the symbol which stands for the underlying type. For
example, to dereferencethe referencevariable $a in our earlier examples,we can write $f $ag.
Other examples:

@array = @{$arrayref}; # array
$scalar = ${$arrayref}[0]; # Return the first element of array above
%hash = %{$hashref}; # hash
$scalar = ${$hashref}{'KEY'}; # Return the value whose key is 'KEY' of hash above
&{$coderef}('a', 'b'); # subroutine invocation

In general, you can omit the curly braces around the reference variables in dereferencing
operations. Situations that require them will be described at a later time.

You can also dereferencemultiple levels deep. For example, consider the chain of references
$b we saw at the beginning of this chapter, we can accessthe data object which holds the
literal 100by dereferencing it two times, by

$a = \100;
$b = \$a;
print $$$b; # prints 100

However , creating a reference to a literal makes it read-only. For example, trying to modify
its value in dereferencing is a runtime error:

$a = \100;
$b = \$a;
$$$b = 90; # same as $$a = 90

Modification of a read-only value attempted at test.pl line 3.

Becausethe value pointed to by $a is read-only, we can only change it by creating a new
literal of the desired value, and point $a to it instead. $b would now re�ect the new value
when dereferenced:

print "Before reference \$a changes: $$$b\n";
$a = \200;
print "After reference \$a changes: $$$b\n";

The output is

Before reference $a changes: 100
After reference $a changes: 200

6.2 ReferencesPrimer 95

Figure6.3: Changein ReferenceChain

This is dif ferent from the casebelow, which you may change the underlying value because
becausethe referenceis taken on a scalarvariable, not a literal:

$a = 100;
$b = \$a;
$$b = 90;

Note that subroutine prototypes are ignored when you invoke a subroutine through its
reference,becauseprototypes are only used during compile time, at which point perl cannot
yet resolve the subroutine to which the referencevariable points.

Recall that to dereference a reference variable we put a pair of curly braces around it and
prepend a backslashto it. I then told you that the bracesare customarily omitted. The fact is,
the curly bracesmay contain anything, provided it returns a referencematching the expected
type. For example,

${ $$ref{'KEY'} }

dereferencesthe hash reference$ref , take the value associatedwith key KEYwhich is presum-
ably a scalar reference,and dereference it. Note that this is not the same as $$$ref f 'KEY' g,
which is actually identical to

${${$ref}}{'KEY'} # $$ref->{'KEY'} (see below)

which dereferencesthe scalar reference$ref to get the underlying hash reference,dereference
it and then accessthe value associated with the key KEY. In other wor ds, when the curly
bracesare omitted, accessof array or hash is performed at last. As the referencechain gets
more complicated the dereferencing expression can get very confusing. Therefore, Perl also
supports a special syntax resembling the C pointer -to-member (arrow) operator. Table 6.1
summarizes the alternative forms.

The arrow operator can be cascaded,for example,

$hashref->{'files' }-> [0] = 'index.html';

presumably $hashref is a hashreference,and $hashref-> f 'files ' g yields an array reference.
However , Perl is smart in that by executing the above statement it will automatically create

96 Chapter 6 References

Operation Alternative Method
$$arrayref[$index] $arrayref->[$index]
$$hashref f $key g $hashref-> f $key g
&$coderef(@args) $coderef->(@args)

Table6.1: AlternativeSyntaxfor Dereferencing

all the necessarydata structuresand referencesto ful�ll this statement if they do not yet exist.
This is known as autovivi�cation . In other wor ds, Perl essentially executesthe following
statement when $hashref doesn't exist:

$hashref = {
'files' => [

'index.html',
],

};

6.2.3 PassBy Reference

Recall that Perl combines the input parameters into a single list. Similarly is the casewhen
a subroutine returns a list of scalars to the caller. Therefore, you cannot pass multiple lists
to a subroutine as you cannot separate them into respective lists. References are useful
in this regard because,no matter how complicated the underlying data object is, they are
simply representedby a scalar, and you can pass scalarseasily as usual. Mor eover, passing
by reference— even if you copy it to another variable — allows you to accessand possibly
modify the underlying data object. Pass by reference is ef�cient because only a scalar
value is involved in parameter passing. When used with subroutine prototypes, subroutine
invocation can never be more �exible than ever.

Passing a reference is easy. Simply take the reference,and pass it as a parameter and get it
back from @ in the subroutine. With prototypes (and it is not invoked using the & form) the
caller doesnot even need to take the referencehimself/herself if the corresponding symbol in
the prototype is pre�xed with the backslashn symbol. The following example demonstrates
both methods:

sub passArgs (\%$) {
my ($hashref1, $hashref2) = @_;
Both variables are now hash references

}

%myhash = ('key1' => 'value1', 'key2' => 'value2');
passArgs(%myhash, \%myhash);

However , becauseprototypes may not be observed, depending on the way the subroutine
is invoked, you may wish to require the caller to take the reference and pass the reference
instead of relying on prototypes, which is in my opinion the safestway to go at present.

Perl does not support named parameter passing, but some programmers may also wish to
emulate it asfollows, which is recommended if you have to passa number of parameters to a

6.3 How Everything Fits Together 97

subroutine.

sub somesub (%) {
my %params = shift;
All parameters now in %params.
my $filename = $params{'FILE'};
my @args = @{$params{'ARGS'}};

}

somesub(
'FILE' => '/bin/ls',
'ARGS' => [

'-l',
'-R',
'/home/cbkihong',

],
);

The advantage is you don't need to remember and follow a predetermined ordering of
parameters becausethere is no ordering in a hash.

6.3 How Everything Fits Together

Here, let us consolidate the conceptsyou have learned in this and the previous chapter. This
is also an appropriate opportunity to form a more complete pictur e as to how they all �t
together.

By now you should already have a clear separation of the names and their underlying data
objects. Data objectsexist independently from variable namesas seenin programs. They are
linked together by an association,or in other wor ds, a binding. Bindings of lexical variables
are determined and �xed in the compilation phase,before a program is even executed. Which
data object a lexical variable is bound to is solely determined by the nesting of environments.
Bindings of dynamic variables, including thosedeclared with the local modi�er are resolved
at runtime from the symbol table, and are dependent on the call stack during program
execution.

Creating referencesto a data object actually implies establishing additional accesspaths to
it. In general, you can accessa data object in two ways. The �rst way is to accessit through
a variable which is visible and is bound to the data object. The second way is to accessit
through dereferencing a referencevariable which points to the data object. Perl maintains the
number of associationsto every data object to determine when they should be freed. Simply
put, Perl would destroy a data object when the number of associationsto a data object drops
to 0. This indicates it cannot be accessedfrom within the program anymore,and can therefore
be safely destroyed. Consider this example:

sub cr eat eAr r ay () {
my @ar r ay = (1, 2, 3);
r et ur n \ @ar r ay ;

98 Chapter 6 References

}

{
my $ar r ayr ef = cr eat eAr r ay ();
pr i nt scal ar @$ar r ayr ef , " \n " ;

}
$ar r ayr ef and under l yi ng obj ect dest r oyed

In the createArray() subroutine, a data structure in the form of an array is created which
holds the threeelements,and a lexical array variable @array is created that associateswith the
array. Before the return function is executed, a referenceto the array is created, which adds
an association to the array. By the time the return function has been executed, the lexical
association to the array has been destroyed. However , becausea reference to the array still
exists, the array is not deallocated. Therefore, when the number of elements of the array as
accessiblethrough the lexical array referenceis print ed on line 8 the value displayed is still
3. However , at the end of the block the lexical array reference is destroyed, so the reference
count to the array is now 0, and the array object is also destroyed.

6.4 Typeglobs

In the previous chapter we had a brief intr oduction to typeglobs. A typeglob representsan
entry on the symbol table and storesa list of referencesto data objectswith the samename. In
this section, we describe how you may use typeglobs in your programs. In many cases,you
seldom have to messwith typeglobs anymore asreferencesare more convenient and �exible.

Packagevariables, including those declared with local are resolved from symbol tables. You
can use typeglobs to create symbol table aliases. For example, *array = *myarray; causes
referencing operations on the symbol array to be resolved through the symbol table entry of
myarray instead.

Figure6.4: SymbolTableAliasing

6.4 Typeglobs 99

This causes$array to refer to $myarray , @array to @myarray and &array to &myarray etc.
However , you rarely would like to create an alias for all types in practice. You can actually
assigna referenceof the desired type to a typeglob to replacethe existing one. In Section 5.3.2
we wr ote an insert() subroutine that allows you to insert a list into any given array at any
arbitrary position. You may also rewrite it in this way to make useof typeglobs:

sub insert (\@$@) {
local *myarray = shift; # not my!!
my ($pos, @list) = @_;
return splice(@myarray, $pos, 0, @list);

}

Note that, unlike references,accessingthrough a typeglob doesnot requireany dereferencing.
With a typeglob entry in place you simply replace the * symbol with whatever type symbol
that is required for the type. Somepeople may consider it convenient asa result.

Also note that you cannot use a lexical variable, that is one declared with my, to represent
a typeglob becausea typeglob is a symbol table entry which by nature cannot be lexical.
However , this does not prevent you from assigning a lexical referencevariable to a typeglob,
though.

Finally I would intr oduce to you the *foo f THINGg notation, which you have already seenin
the previous chapter in passing using *INC asan example. By using this notation you can get
the individual referencesheld in a given typeglob foo . ReplaceTHING with the name of the
type. The table below lists the possible types and their names:

THING Type
SCALAR Scalarreference(n$foo)
ARRAY Array Reference(n@foo)
HASH Hash reference(n%foo)
CODE Subroutine reference(n&foo)
GLOB Typeglob reference(n*foo)
FORMAT Format Variables (Not covered in this tutorial)
IO Filehandle

The notations in parenthesesrepresentan alternative way of accessingthem, using references.
Becauseof the absenceof alternative ways to get the reference to a �lehandle, *foo f IOg is
most probably the only one that is more widely used. This is used when a �le handle
needs to be passedto and from a subroutine. We will talk about �lehandles and the generic
input/output mechanism at a later time.

While typeglobs are still useful in modern Perl programming, you are generally advised to
use them only if you have good reasonsto do so, especially if that purpose can be ful�lled
with other means such as references. First, typeglobs cannot be lexical variables while
referencevariables can. Also, typeglobs cannot be used to createcomplex data structuresthat
are possible with references.

Now you should have the fundamental knowledge to proceed to object-oriented program-
ming.

100 Chapter 6 References

Chapter 7

Object-Oriented Programming

7.1 Introduction

Object-oriented programming (OOP) is a popular term in the programming community . It
representsan alternative approachof programming to copewith program development in the
large. As I outlined in the previous chapter, maintenance of large scaleprogramming projects
becomeincreasingly dif �cult asthe size of codebaseincreases.Object-oriented programming
is seenby many in the Software Engineering community that it is a desirable solution to keep
complex programming projects in order. In the text below we would explore the rationale
behind this argument and point out how object-oriented model can help alleviate someof the
de�ciencies in the plain old procedural model.

Perl started to support the notion of object-oriented programming in Perl 5. In fact, most of
the necessaryconceptsthat you need to understand object-oriented programming in Perl has
already beencovered in the previous chapters, and frankly , not much content are left for this
chapter. However , becauseof the importance of object-oriented programming, and in order
to avoid making the previous chapters too long if I lump them together, I have to dedicate
a chapter to object-oriented programming. Compared with previous chapters, you will �nd
longer and more complete examples in this chapter, so asto help you familiarize with OOP in
a more practical context. You should �ip back to the previous chapters if you have not read
them carefully , becausethe Perl implementation of OOP is based on subjectsstudied in the
previous chapters. In other wor ds, knowledge of packages,scope,subroutines and references
is a prerequisite to understanding OOP in Perl.

If you have previously programmed in some other object-oriented programming languages
like Javaand C++, you may safely skip the section “Object-oriented Concepts” below. How-
ever, becausethe Perl implementation of OOP is very much dif ferent from other languages
like PHP, Java and C++, you should not skim read the remaining sections as you would
�nd the Perl approach to object-oriented programming alien to you (it happened to me as
well when I learned Perl with some knowledge in C++), and there are some traps to which
programmers who have written object-oriented programs in other languages are vulnerable.
Pleasekeep this in mind when you are reading this chapter.

101

102 Chapter 7 Object-Oriented Programming

7.2 Object-Oriented Concepts

7.2.1 Programming Paradigms

The syntax of a programming language is largely in�uenced by the programming paradigm
on which the language is based. A programming paradigm representsa framework which
describes in a general, language-independent way how syntactic language elements are
organized and processed. Without delving deep into a formal de�nition of programming
paradigms, which is far beyond the scopeof this tutorial, I would rather state in a morecasual
way that a programming paradigm is supported by a school of thoughts to addressa speci�c
subset of programming tasks. Therefore, it is generally not appropriate to strictly claim that
one paradigm is always better than the other. However , I personally believe if properly
implemented, a properly-written object-oriented program is easier to maintain, and allows
for a larger basis of extension by leveraging the power of object-oriented programming, for
reasonsthat I would explain later in this section.

There are various programming paradigms in use today. However , the majority of pro-
grammers adopt either one of two major paradigms, namely procedural programming and
object-oriented programming.

Our discussion so far has been solely based on the procedural programming paradigm. A
complicated program is broken down into smaller pieces by delegating pieces of the source
code to subroutines. and external source �les. Variables are created and updated dir ectly to
maintain program stateduring execution.

Object-oriented programming should not be considered a total revamp of procedural pro-
gramming. Instead, it is best considered one that usesprocedural programming as the basis
with the emphasis on the way dif ferent logical components (i.e. classes)interact with each
other. It enforcesa more well-de�ned way of grouping related subroutines and data into a
logical entity, and this is the foundation of object-oriented programming.

For an executive summary of the various programming paradigms, please visit the
Wikipedia.or g entry on programming paradigm. Beprepared, they are conceptual computer
sciencetopics that cannot be easily understood.

7.2.2 Basic Ideas

As I mentioned in the previous section, the idea of object-oriented programming is to
group related subroutines and data into logical entities, each of which constituting its
own domain. Such logical entities are known as classes. Each class de�nes a framework
which describesthe properties and behaviours of objects created(instantiated) from the class.

Consider an airplane and a car. Becausea car and an airplane have dif ferent characteristics
and exhibit dif ferent behaviours (e.g. �y vs. move) we model them using two dif ferent
classes. In other wor ds, eachclassrepresentsa certain type of object. In a class,behaviours
are implemented as methods, which are subroutines associatedwith a class. For example,
an airplane class would very likely include an ascend() method and a descend() method
which contain the program needed for escalation and landing of an airplane. Also, dif ferent
classesare likely to have dif ferent properties . For example, an airplane is likely to maintain
an altitude property to track down the current height of the airplane above the ground. On
the other hand, a car would not have this property. A classonly de�nes the properties. The

http://www.wikipedia.org/wiki/Programming_paradigm

7.3 OOP Primer: Statistics 103

values of which are maintained independently in eachclassinstance.

After we have established a class,we need to createa classinstance which is called an object.
When a class instance (an object) is created, it possessesall the methods of the class and,
as noted in the previous paragraph, each object holds an instance of the properties. This
arrangement allows eachobject to carry its own setof property values. For example, consider
a Car class which has only one property colour and one method move() . When we create
several objects from the Car class, each of them “inherits” the method from the class and
maintains a value representing the colour of the object.

7.2.3 Fundamental Elements of Object-Oriented Programming

An object-oriented programming language needs to qualify three fundamental properties,
namely encapsulation , inheritance and polymorphism . Theseprinciples are fundamental to
support the virtues of object-oriented programming.

Adapted from Wikipedia.or g, encapsulation refers to thepracticeofhiding datastructureswhich
representthe internal stateof an objectfrom accessexceptthrough public methodsof that object.
Basically, that implies you should not change a property by dir ectly modifying the internals
of an object. Instead, you should modify it through the interface of the object. An interface
is what is expected to be seen from outside of the object. In Perl, this includes all object
methods. For example, while an airplane object maintains the altitude property, you should
not modify its value dir ectly. Instead, you invoke the methods ascend() and descend()
to change its altitude becausesome actions need to be taken before climbing up or going
down, which are accounted for by the two methods. By interacting with methods through
the interface, the methods can check whether the operation is valid before committing any
changesto the object.

Inheritance allows a class(subclass)to inherit methods from another class(superclass). For
example, a Helicopter classmay inherit from the Airplane classthe ascend() and descend()
methods, while adding a stationary() method which an airplane doesn't have and is a
characteristic of a helicopter. By inheriting from another class, you don't need to write the
inherited code again (unless you would like to override them). Inheritance allows creation of
code that can be easily reused.

Polymorphism is a more abstract notion that cannot be easily explained without resorting
to examples. The principle is that it allows programmers to use a consistent interface for
method invocation on objectsof dif ferent classes.

These concepts would be revisited later on. However , before we go further , let us write a
simple Perl program with object-oriented perspective so that you can appreciate how an
object-oriented program looks like in Perl.

7.3 OOP Primer: Statistics

In this section we write a simple Perl module Stats.pm which calculates the mean, variance
and standard deviation. We then write a perl program stats.pl which uses the module
written to output these statistics given the input of a set of numbers. The program listing is

104 Chapter 7 Object-Oriented Programming

given �rst, and the theories are revisited afterwards.

EXAMPLE 7.1 Statistics Calculator

1 # St at s . pm
2 # The " St at s" Per l modul e
3
4 package St at s ;
5
6 # Cr eat e a new cl ass i nst ance (obj ect)
7 # and r et ur n a r ef er ence of t he obj ect
8 sub new {
9 my $ar g0 = $_[0] ;

10 my $cl s = r ef($ ar g0) | | $ar g0;
11 my $t hi s = { } ;
12 bl ess $t hi s , $cl s ;
13 $t hi s - >cl ear ();
14 r et ur n $t hi s ;
15 }
16
17 sub cl ear {
18 my $t hi s = $_[0] ;
19 $t hi s - >{ 'n uml i st ' } = undef ;
20 $t hi s - >{ 'x _sum' } = 0;
21 $t hi s - >{ 'x 2_sum' } = 0;
22 }
23
24 # Append a val ue t o t he l i st
25 sub addVal ue {
26 my $t hi s = $_[0] ;
27 my $num = $_[1] ;
28 i f (def i ned $num) {
29 push @{ $t hi s - >{ 'n uml i st ' } } , $num;
30 $t hi s - >{ 'x _sum' } += $num;
31 $t hi s - >{ 'x 2_sum' } += $num** 2;
32 }
33 }
34
35 # Cal cul at e t ot al
36 sub get Tot al {
37 my $t hi s = $_[0] ;
38 r et ur n $t hi s- >{ ' x_sum' } ;
39 }
40
41 # Cal cul at e mean
42 sub get Mean {
43 my $t hi s = $_[0] ;
44 my @numl i st = @{$ t hi s- >{ ' numl i st ' } } ;
45 i f (! @numl i st) { r et ur n 0; }
46 r et ur n $t hi s- >get Tot al ()/@ numl i st ;
47 }

7.3 OOP Primer: Statistics 105

48
49 # Cal cul at e var i ance
50 sub get Var i ance {
51 my $t hi s = $_[0] ;
52 my @numl i st = @{$ t hi s- >{ ' numl i st ' } } ;
53 my $n = @numl i st ;
54 my $sum_x2 = $t hi s - >{ 'x 2_sum' } ;
55 my $sum_x = $t hi s- >{ ' x_sum' } ;
56 i f (!$ n) { r et ur n 0; }
57 r et ur n ($n* $sum_x2 - $sum_x* * 2)/ ($ n* * 2) ;
58 }
59
60 # Cal cul at e st andar d devi at i on
61 sub get St dDev {
62 my $t hi s = $_[0] ;
63 r et ur n $t hi s- >get Var i ance() * * 0. 5;
64 }
65
66 # Get l i st of val ues
67 sub get Val ueLi st {
68 my $t hi s = $_[0] ;
69 r et ur n @{ $t hi s - >{ 'n uml i st ' } } ;
70 }
71
72 1;

1 #! / usr/b i n/ per l - w
2
3 # st at s . pl
4 # Thi s pr ogr am uses St at s. pm t o pr i nt out some assor t ed
5 # st at i st i cs on t he i nput number s
6
7 use St at s ;
8
9 # Cat ch Ct r l -C (SI GI NT si gnal)

10 $SI G{ ' I NT' } = ' get Resul t s ' ;
11
12 my $obj = new St at s;
13
14 sub get Resul t s {
15 pr i nt " \n\ nResul t s ==============================\ n" ;
16 pr i nt " Number of val ues : " , scal ar ($obj - >get Val ueLi st ()) , " \n " ;
17 pr i nt " Tot al : " , $obj - >get Tot al (), " \n" ;
18 pr i nt " Mean: " , $obj - >get Mean() , " \n" ;
19 pr i nt " St andar d Devi at i on: " , $obj - >get St dDev () , " \n " ;
20 pr i nt " Var i ance: " , $obj - >get Var i ance(), " \n " ;
21 exi t (0);
22 }
23
24 pr i nt qq�
25 St at i st i cs Cal cul at or

106 Chapter 7 Object-Oriented Programming

26 Cal cul at es sever al set s of st at i st i cs gi ven a sequence of i nput number s .
27
28 Ent er one val ue on each l i ne.
29 To exi t , pr ess Ct r l -C .
30 � ;
31
32 whi l e (1) {
33 pr i nt " >> " ;
34 chomp(my $num = <STDI N>);
35 $obj - >addVal ue($num);
36 }

When the program is executed,the output looks like this:

1 cbki hong@cbkih ong: � /d ocs/ per l t ut / sr c / oop$ per l -w st at s . pl
2
3 St at i st i cs Cal cul at or
4 Cal cul at es sever al set s of st at i st i cs gi ven a sequence of i nput number s .
5
6 Ent er one val ue on each l i ne.
7 To exi t , pr ess Ct r l -C .
8 >> 13
9 >> 26

10 >>
11
12 Resul t s ==============================
13 Number of val ues : 2
14 Tot al : 39
15 Mean: 19. 5
16 St andar d Devi at i on: 6. 5
17 Var i ance: 42. 25

In this transcript, 13 and 26 were input and then Ctrl-C was pressedto signal the end of input
list. The results are then displayed. This program catches(intercepts) the SIGINT signal,
which is generated when you pressCtrl-C. By default, if you pressCtrl-C when a program is
running it promptly terminates the program. In this program, I demonstrated how to install a
signal handler , which is a subroutine that is automatically invoked when the corresponding
signal is caught. The signal handler is executed instead of terminating the program.

Signals are messagessent by the operating system to a process(a program in execution).
Becausesignal is a notion from Unix, and the messagebroadcasting mechanism is dif ferent
on every operating system, behaviour of signal handling is platform-speci�c. Signals are
readily supported on Unix platforms by using the signal handling system calls. Windows
has limited support of signals. Support for common signals like SIGINT seemsto be working
on Windows, though. The example program works on both of my testing platforms, namely
GNU/Linux and Activestate Perl 5.8.0on Windows. I chose to use signal becausecatching
of the SIGINT signal and executing the getResults() subroutine is handled automatically
so we don't need to place any extra code in the while loop to detect the end of input list.
However , becausean explanation of signals is out of the scopeof this tutorial, and is not the
main theme of this chapter, my discussion of signals will stop here.

7.3 OOP Primer: Statistics 107

7.3.1 Creating and Using A Perl Class

Perl does not have any specialized syntax for classes as in many other object-oriented
programming languageslike C++, Javaand PHP. That makesOOP in Perl looks more cryptic
than it really is. A Perl classis contained in a �le of extension `.pm' in its own package. This
is called a module . The �lename of the module is the name of the class followed by `.pm'.
The package name is also the name of the class. Recall from the previous chapter that if the
package name contains `::' , it is changed to the dir ectory separator as the pathname when
the module is being sourced. The following table displays someexample packagenamesand
the corresponding locations where they need to be saved.

PackageName File Path (relative to @INC)
Stats Stats.pm
Crypt::CBC Crypt/CBC.pm

Table7.1: Relationshipof PackageNamesandFile Placements

Recall that @INCcontains a list of path pre�xes that Perl uses to locate a Perl source �le. A
module contains all method de�nitions. Don't forget to put the 1; at the end of the module.
Omitting this results in a compile-time error.

Before you use a module you should �rst import it into your program. You can use require
that you were taught in Chapter 5. You may import a module in one of two ways. The �rst
way is to pass the path to the module (relative to @INC) in quotes to the require function.
For example, require "Crypt/CBC.pm"; Another way is to just specify the package name
without quotes, for example require Crypt::CBC; However , the use function is preferred in
general for Perl modules. The syntax of use is

use MODULE[LIST] ;

It is semantically equivalent to

BEGIN {
require MODULE;
import MODULELIST; # indirect object syntax

}

which not only imports the module MODULEat compile time, it also imports the symbols
speci�ed by LIST into the current namespace (package) using the import class method.
import is a special classmethod that may be de�ned by a classauthor. Many modules do not
have any symbols to be exported, however, someof them do. If the method cannot be found,
it is silently bypassed. For example, users of the CGI::Carp module may import from it the
fatalsToBrowser symbol, which is actually the name of a subroutine that generatesa page
in HTML describing the details when an error occurs, which is then returned to the viewer 's
browser. This is used by CGI scripts to easily trap runtime errors. The use statement required
is

use CGI::Carp 'fatalsToBrowser';

108 Chapter 7 Object-Oriented Programming

Documentation of a classshould tell you how to use it, and whether any symbols need to be
imported. Therefore, usually you don't have to worry about this at all, unless you have to
write a classthat exports symbols. The use function is generally preferred to require because
modules are imported at compile time. Therefore,missing modules are discovered at the time
the program is compiled before execution, which savesyou from an embarrassing situation
where execution is on midway when Perl �nds out some of the modules are missing and the
program fails to continue.

7.3.2 How A Class Is Instantiated

As mentioned previously, to instantiate a classis to createan object that belongs to the class.
From the perlobj manpage, a Perl object created is simply a referencethat happensto knowwhich
classit belongsto. How doeseverything �t together?

Let us go back to the new() classmethod of the Statsclassin our example. The most important
statement is on line 12, that is, the bless() statement. The bless() statement makes the
reference $this no longer just an ordinary hash reference. It becomesan object reference
of the Stats class, and by doing so you can also accessthe methods from the reference.
Therefore, this method is known asa constructor , becauseit is where the object is created. A
constructor is not necessarily called `new() '. It can be of any name, despite it is customarily
called new. Object-speci�c data, or properties, are stored into the object reference. Let us
explain eachline one by one.

my $ar g0 = $_[0] ;
my $cl s = r ef ($ar g0) | | $ar g0;

In Perl, methods are exactly identical in behaviour to subroutines. However , whether it acts
like a method or a plain subroutine is determined solely by the way it is invoked. A method
is a subroutine that expectsan object referenceas its �rst argument. Using the new() method
asan example, the following ways of invoking it are identical:

my $obj = new St at s; # I ndi r ect obj ect synt ax
my $obj = St at s - >new(); # C++-l i ke cl ass member i nvocat i on (r ecommended)
my $obj = St at s: :n ew(St at s) ; # Resembl i ng subr out i ne i nvocat i on

With the indir ect object syntax, the name of the method is placed �rst, followed by the object
reference or name of the class. For example, getTotal $obj ('a', 'b') means that the
method getTotal() is invoked on the object $obj . Any arguments that follow ('a', 'b') are
arguments to the method. This form is generally only recommended for constructors, because
this form of method invocation is not syntactically obvious. The secondform is generally rec-
ommended as it's lessconfusing. The classname or object referenceis placed �rst, followed
by - > , the method name and arguments. The last form is typical subroutine invocation.
However , in this form you needto passthe classnameor object referenceasthe �rst argument.

Now go back to our example. We put the �rst argument to $arg0 . The next line serves to
obtain the classname from it. The ref() function tests if the parameter is a reference. If it
is one, it returns a string indicating its type (seethe ref() documentation for details). If it is
an object reference,it returns the package name. By the short-circuiting behaviour of logical
operators the packagename is assignedto $cls . This catersfor the fact that the new() method
can be invoked on the Stats classor a class instance, although customarily, a constructor is

http://www.perldoc.com/perl5.8.0/pod/perlobj.html
http://www.perldoc.com/perl5.8.0/pod/func/ref.html

7.4 Inheritance 109

only invoked on a classin most other programming languages.

my $t hi s = { } ;
bl ess $t hi s , $cl s ;

Here, we create an empty hash reference and bless() it to the Stats class. This operation
is called bless , very likely becauseit works like a wizar d playing with his magic wand,
turning an ordinary reference into an object. Very magical indeed. To be an object, Perl
only mandates a bless() ed reference. It doesn't require to be a hash reference, although
it is most likely chosen for its �exibility . Pleaseread the perltoot manpage for its coverage
on alternative forms of Perl objects. It accepts two parameters. If the second parameter is
missing, it assumesthe current package.

The last two lines in the constructor resetsthe object data and return the object referenceso
that the caller of the constructor (in stats.pl as $obj) can save the object reference for use in
later operations.

The program reads in a number from eachline, and invoke the addValue() method on $obj .
This invokes the method with the object reference itself as the �rst parameter. The value,
as the second parameter, is appended to a list of numbers that is stored with the object
reference,and update the sum (x sum) and the sum of squares (x2 sum). Thesetwo piecesof
statistics are used to calculate the various statistics, when the SIGINT signal is detected and
the getResults() signal handler invoked. The variance and standard deviation are given by

Standard deviation (s) = 1
n

q
(nå n

i= 1 x2
i � (å n

i= 1xi)2)

Variance = s2

The classprovides a number of methods for users of the class to retrieve the list of values,
total, mean, variance and standard deviation. Note that these methods are invoked on
the bless ed object returned by the constructor instead of on the class. Through the class
interface, the class provides all the necessarymethods to interact with without requiring
the user to know anything about the implementation of the class. For example, you do
not have to care about how data are stored and processedinternally . Becausean object
is simply represented by a reference variable, unlike some other programming languages
Perl does not have the notion of protected accessspeci�ers to classify methods by dif ferent
accesspermissions such as “public” or “private”. Users may also be possible to manipulate
the underlying hash dir ectly. However , by documenting the interface clearly class users
will be encouraged to accessthe object through the interface instead of having to manipu-
late objectdata dir ectly from the referencevariable. This ful�lls the initiative of encapsulation.

7.4 Inheritance

Inheritance is important in any programming languages because it allows you to reuse
portions of another sourceprogram in your program, so that you don't have to rewrite them.
You save development effort as a result. Perl implements inheritance in a very simple way.
When a method is invoked on an object and the method cannot be found in the current
package, the packages whose names are in the variable @ISA are searched in order for the
missing method. In object-oriented terminology , we describe this situation as a derived
class inheriting from a base class , becausethe derived classcontains methods de�ned in

http://www.perldoc.com/perl5.8.0/pod/perltoot.html

110 Chapter 7 Object-Oriented Programming

itself as well as from the baseclasses. A baseclass is also called a superclass or a generic
class, while a derived classis also called a subclass.

When you put the name of a package into your package's @ISA, all the methods de�ned in
that package,together with any de�ned in their baseclassesaswell asthe baseclassesof base
classesetc. are available in your package. You may wish to rede�ne some of the inherited
methods becausethey may not suit your current classanymore. To rede�ne a method, which
is called overriding a method, simply rewrite the method in the way you desire and put it
in the current package. If the method is invoked on the current packageor its subclasses,the
overriding method will be invoked instead of the overridden ones (that is, those in the base
classes).

As an example, we will write a Stats2 class which inherits from Stats with the added
functionality of deducing the maximum and minimum among the list of numbers input.
Also attached below is the modi�ed stats2.pl which use s Stats2 with the additional
functionalities:

EXAMPLE 7.2 Statistics Calculator (Extended)

1 # St at s2.p m
2 # Der i ved " St at s " wi t h some f unct i onal i t ie s added
3
4 package St at s2;
5
6 @I SA = ('S t at s '); # i nher i t s St at s
7 use St at s ;
8
9 # Not e t hat by usi ng t he 2-a r gument f or m of

10 # bl ess() t he const r uct or can al so be i nher i t ed
11
12 # Over r i de addVal ue()
13 sub addVal ue {
14 my ($t hi s , $num) = @_;
15 i f (! def i ned $t hi s - >{ 'm i n' }) {
16 $t hi s - >{ 'm i n' } = $num;
17 $t hi s - >{ 'm ax' } = $num;
18 } el se {
19 $t hi s - >{ 'm i n' } = ($num < $t hi s- >{ ' mi n' }) ?$num: $t hi s- >{ ' mi n' } ;
20 $t hi s - >{ 'm ax' } = ($num > $t hi s- >{ ' max' }) ?$num: $t hi s- >{ ' max' } ;
21 }
22 # i nvoke t he base cl ass ver si on of addVal ue()
23 $t hi s - >SUPER: :a ddVal ue($num) ; # OR $t hi s - >St at s : : addVal ue($ num)
24 }
25
26 # Fi nd mi ni mum
27 sub get Mi ni mum {
28 my $t hi s = $_[0] ;
29 r et ur n $t hi s- >{ ' mi n' } ;
30 }
31
32 # Fi nd maxi mum

7.4 Inheritance 111

33 sub get Maxi mum {
34 my $t hi s = $_[0] ;
35 r et ur n $t hi s- >{ ' max' } ;
36 }
37
38 1;

1 #! / usr/b i n/ per l - w
2
3 # st at s2.p l
4 # Thi s pr ogr am uses St at s2. pm t o pr i nt out some assor t ed
5 # st at i st i cs on t he i nput number s
6
7 use St at s2;
8
9 # Cat ch Ct r l -C (SI GI NT si gnal)

10 $SI G{ ' I NT' } = ' get Resul t s ' ;
11
12 my $obj = new St at s2;
13
14 sub get Resul t s {
15 pr i nt " \n\ nResul t s ==============================\ n" ;
16 pr i nt " Number of val ues : " , scal ar ($obj - >get Val ueLi st ()) , " \n " ;
17 pr i nt " Mi ni mum: " , $obj - >get Mi ni mum(), " \n " ;
18 pr i nt " Maxi mum: " , $obj - >get Maxi mum(), " \n " ;
19 pr i nt " Tot al : " , $obj - >get Tot al (), " \n" ;
20 pr i nt " Mean: " , $obj - >get Mean() , " \n" ;
21 pr i nt " St andar d Devi at i on: " , $obj - >get St dDev () , " \n " ;
22 pr i nt " Var i ance: " , $obj - >get Var i ance(), " \n " ;
23 exi t (0);
24 }
25
26 pr i nt qq�
27 St at i st i cs Cal cul at or
28 Cal cul at es sever al set s of st at i st i cs gi ven a sequence of i nput number s .
29
30 Ent er one val ue on each l i ne.
31 To exi t , pr ess Ct r l -C .
32 � ;
33
34 whi l e (1) {
35 pr i nt " >> " ;
36 chomp(my $num = <STDI N>);
37 $obj - >addVal ue($num);
38 }

Note that by placing the name of a packagein @ISAdoesnot freeyou from the need of adding
the use statement to import the contents of the package. Stats is the baseclasswhile Stats2
is the derived class.Here, the addValue() method is overridden to checkwhether the current
input number is the minimum or maximum and update the counters internally if it is one to
always keep track of the minimum and the maximum. Then, two new methods are de�ned
that let users retrieve the minimum and maximum values.

112 Chapter 7 Object-Oriented Programming

Occasionally an overriding method needs to invoke an inherited but overridden method.
addValue() here is an example, becausewe overrode it to add new functionalities rather
than to replace it in its entirety. You can pre�x a package name before the name of the
method, separated by two colons, to indicate the classfrom which to start searching for the
method. The default is always to start searching from the packageto which an object belongs.
Therefore, you always have accessto the current, overriding version. You can accessthe
version de�ned in the Stats package,that is the baseclasswith respectto Stats2 , by

$this->Stats::addV alu e($num);

However , for conveniencea pseudo classSUPERhasbeende�ned that always refer to the base
classes.Essentially, the current, overriding version is bypassed, as indicated in the example
program.

The Stats2 class can actually make use of the getValueList() method to deduce the
maximum and the minimum values on-the-�y instead of having to memorize two additional
piecesof information, and the addValue() method doesnot need to be overridden asa result.
This is left asan exercisefor the readers.

Even if your class's@ISAis empty, it still inherits from a classcalled UNIVERSAL, which is the
baseclassof all classesin Perl. Therefore, methods de�ned in UNIVERSALare available in any
class.It has threemethods, which are described below.

isa(CLASS)

This method allows you to checkwhether an object belongs to CLASSor a subclassof CLASS. It
returns a true value if it is one, undef otherwise. You may use it in two ways.

Object-oriented form:

$obj->isa('UNIVERS AL'); # must be true, by definition

Procedural form:

use UNIVERSAL 'isa';
isa($obj, 'UNIVERSAL');

can(METHOD)

This method allows you to check whether an object has a method called METHOD. It returns
the referenceto the subroutine if there is one, undef otherwise. It also searchesthe upstream
baseclasses.As an example, this is an indir ect and silly way to invoke the isa method on the
current package:

sub isSubclass {
my ($this, $cls) = @_;
my $subref = $this->can('isa') ;

7.4 Inheritance 113

$this->$subref($cls);
}

$obj->isSubclass(' UNIVERSAL') ;

Can you add methods to a package like UNIVERSALwithout modifying the module �le? The
answer is you can. Here, I am going to demonstrate how to add to the UNIVERSAL class a
constructor so that you don't have to de�ne any constructors in your modules.

EXAMPLE 7.3

1 # uni ver sal . pl
2 # Cont ai ns def i ni t i ons t o add t o UNI VERSAL cl ass
3
4 package UNI VERSAL;
5
6 sub new {
7 my $cl s = r ef($ _[0]) | | $_[0] ;
8 my $t hi s = bl ess { } , $cl s ;
9 $t hi s - >i ni t i al i ze();

10 r et ur n $t hi s ;
11 }
12
13 sub i ni t i al i ze {
14 # def aul t s t o no- op
15 # over r i de t o execut e cl ass- speci f i c st ar t up code
16 }
17
18 1;

1 # Test Obj ect . pm
2 # Test cl ass modul e
3
4 package Test Obj ect ;
5
6 sub i ni t i al i ze {
7 pr i nt " Test Obj ect : :i ni t i al i ze()\ n" ;
8 $t hi s - >{ ' a' } = 6;
9 }

10
11 sub di spl ayMessage {
12 my ($t hi s , $msg) = @_;
13 pr i nt $msg;
14 }
15
16 1;

1 #! / usr/b i n/ per l - w
2
3 # t est uni ver sal . pl
4
5 BEGI N {

114 Chapter 7 Object-Oriented Programming

6 # Add addi t i onal met hods t o UNI VERSAL
7 r equi r e " uni ver sal . pl" ;
8 }
9

10 use Test Obj ect ;
11
12 my $obj = new Test Obj ect ;
13 $obj - >di spl ayMessage (" Hel l o Wor l d! \n ");

universal.pl contains the methods to add to the UNIVERSALclass. This �le is sourced by a
BEGIN block in testuniversal.pl which ensuresthat the module de�nitions are imported at
compile time. Note that the TestObject module does not have to de�ne the constructors asa
result. Note that you may optionally specify an initialize() method in your classmodule,
which is automatically invoked by the constructor (universal.pl ::9) where you can place
some initialization code. If you do not provide it, the version provided by universal.pl will
be used instead, which is just an empty method that doesnot do anything.

Although you may do it that does not necessarily mean you should do it. In general, I
suggestconverting universal.pl into a module which actsasthe baseclassfor all your other
modules instead of adding new methods to the UNIVERSAL class. This example is given to
demonstrate it works. However , if a user of TestObject forgets to import the universal.pl ,
then it will be an error asa constructor cannot be found.

7.5 Another Example: Traf �c Light Simulation

If my discussion in the previous section de�nitions sounds too abstract to you, let us consider
a �ctitious Traf�cLight classwhich models a typical traf�c light we have on the streetstoday.
We would write a program which models its behaviour in a strict object-oriented approach
so that you can appreciateOOP in a practical context.

For simplicity , let's assume the traf�c light consists of two states only. A red light denotes
“stop” and a green light denotes “go”. The two statesare mutually exclusive, that is, exactly
one of the two lights should be lit at any time. The state alternates every 10 seconds. This is
coordinated by a controller regulated by a timer.

This situation can be modeled using threeclasses,becausethreetypes of objectsexist, namely
the traf�c light, the controller and a timer. The threeobjectshave dif ferent behaviours, so we
separatethe program into threeclasses.EachTraf�cLight object only needsto remember one
pieceof information, that is, the current state, in order to (logically) switch on the appropriate
light bulb. As dif ferent traf�c lights can be in dif ferent statesat any given instant, the state
can be regarded as a property associatedwith eachTraf�cLight object. To changethe state of
the Traf�cLight we can createa state() subroutine and associateit with the Traf�cLight class
through which the state of the Traf�cLight object concerned can be retrieved or set. A Timer
object implements a countdown timer to regulate the controller, which in turn invokes the
changein the stateof the traf�c light.

While I have not yet covered how to write a Perl program in object-oriented approach, I
consider it may be helpful for me to show the source code early so that you can have some
more practical ideas of object-oriented programming and how OOP is implemented in Perl.
Note that OOP in Perl makes extensive use of references, which are not intr oduced until

7.5 Another Example: Traf�c Light Simulation 115

the next chapter. You are encouraged to �ip to the next chapter to get some basic ideas of
references�rst. Alternatively , the source code is extensively commented so that you can try
to appreciate the program structure without fully understanding the syntax. I will explain
what the program doesand how everything �ts together as I proceed.

EXAMPLE 7.4

1 # Ti mer . pm - - - i mpl ement s a count down t i mer
2
3 package Ti mer ;
4
5 # Cr eat e a Ti mer cl ass i nst ance (i nst ant i at i on)
6 sub new {
7 my $cl ass = r ef($ _[0]) | | $_[0] ;
8 my $t hi s = { } ;
9 $t hi s - >{ 'i nt er val ' } = $_[1] ; # set i nt er val i n seconds

10 bl ess $t hi s , $cl ass ;
11 r et ur n $t hi s ;
12 }
13
14 # You at t ach a l i st ener so t hat when some event s occur ,
15 # t he " cal l back" l i st ener subr out i ne woul d be i nvoked.
16 # Thi s i s a good pl ace f or cal l er t o per f or m some act i ons
17 # i n r espond t o t he event .
18
19 # I f you have pr ogr ammed Java Swi ng bef or e, t hi s concept
20 # and t er mi nol ogy shoul d be f ami l i ar t o you.
21 sub addLi st ener {
22 my $t hi s = $_[0] ;
23 # push (sub r ef er ence, obj ect r ef er ence) i nt o l i st ener l i st
24 push @{$ t hi s- >{ ' l i st ener s ' } } , [$_[1] , $_[2]] ;
25 }
26
27 # St ar t count down t i mer
28 sub st ar t {
29 my $t hi s = $_[0] ;
30 my $st ar t t i me = t i me;
31 whi l e (t i me - $st ar t t i me <= $t hi s- >{ ' i nt er val ' }) {
32 # no- op
33 }
34 # Ti mer st ops. Not i f y l i st ener s .
35 f or each (@{ $t hi s - >{ 'l i st ener s ' } }) {
36 # I nvoke each l i st ener
37 my $subr ef = ${ $_} [0] ;
38 ($ {$ _} [1]) - >$subr ef ();
39 }
40 }
41
42 1;

1 # Tr af f i cLi ght . pm - - - an abst r act i on of t he t r af f i c l i ght
2

116 Chapter 7 Object-Oriented Programming

3 package Tr af f i cLi ght ;
4
5 # Pr oper t i es :
6 # st at e: 0 f or RED (st op) ; 1 f or GREEN (go)
7
8 # Cr eat e a Tr af f i cLi ght cl ass i nst ance (i nst ant i at i on)
9 sub new {

10 my $cl ass = r ef($ _[0]) | | $_[0] ;
11 my $t hi s = { } ;
12 $t hi s - >{ 's t at e' } = 0; # def aul t s t o " st op"
13 bl ess $t hi s , $cl ass ;
14 r et ur n $t hi s ;
15 }
16
17 # Get / set st at e: " st op" or " go"
18 sub st at e {
19 my $t hi s = shi f t ;
20 i f (def i ned $_[0]) {
21 i f ($_[0] ! = 0 && $_[0] ! = 1) {
22 di e " Tr af f i cLi ght : :s t at e(): I nval i d ar gument . \n " ;
23 }
24 $t hi s - >{ 's t at e' } = $_[0] ;
25 pr i nt (($ t hi s- >{ ' st at e' }) ?" GREEN" : "RED", " l i ght i s ON. \n ");
26 }
27 r et ur n $t hi s- >{ ' st at e' } ;
28 }
29
30 1;

1 # Cont r ol l er . pm - - - r egul at es t he t r af f i c l i ght s
2
3 package Cont r ol l er ;
4
5 use Ti mer ;
6 use Tr af f i cLi ght ;
7
8 # Cr eat e a Cont r ol l er cl ass i nst ance (i nst ant i at i on)
9 sub new {

10 my $cl ass = r ef($ _[0]) | | $_[0] ;
11 my $t hi s = { } ;
12 bl ess $t hi s , $cl ass ;
13 $t hi s - >{ 't i mer ' } = new Ti mer ($ _[1]) ;
14 $t hi s - >{ 't i mer ' } - >addLi st ener (\ &Cont r ol l er : :c hangeSt at e, $t hi s) ;
15 $t hi s - >{ 't l i ght ' } = undef ;
16 r et ur n $t hi s ;
17 }
18
19 # Speci f i es whi ch t r af f i c l i ght t o r egul at e
20 sub set Tr af f i cLi ght {
21 my $t hi s = $_[0] ;
22 $t hi s - >{ 't l i ght ' } = $_[1] ;

7.5 Another Example: Traf�c Light Simulation 117

23 }
24
25 # I nvoked aut omat i cal l y when a t r af f i c l i ght need t o change st at e
26 sub changeSt at e {
27 my $t hi s = shi f t ;
28 my $cur r ent st at e = $t hi s- >{ ' t l i ght ' } - >st at e();
29 $t hi s - >{ 't l i ght ' } - >st at e(1 - $cur r ent st ate) ;
30 }
31
32 # Go i nt o an i nf i ni t e l oop
33 sub st ar t {
34 my $t hi s = $_[0] ;
35 $t hi s - >changeSt at e(); # Thi s has t o be cal l ed f or f i r st t i me
36 # Pi ck t he f i r st one and go
37 whi l e (1) {
38 # Reset t i mer
39 $t hi s - >{ 't i mer ' } - >st ar t ;
40 }
41 }
42
43 1;

1 #! / usr/b i n/ per l - w
2
3 # t l i ght 1. pl - - - St andal one t r af f i c l i ght si mul at i on
4
5 use Tr af f i cLi ght ;
6 use Cont r ol l er ;
7
8 # Cr eat e one t r af f i c l i ght and one cont r ol l er
9 # whi ch changes st at e ever y 10 seconds

10 $l i ght 1 = new Tr af f i cLi ght ;
11 $ct l = new Cont r ol l er (10) ;
12
13 $ct l - >set Tr af f i cLi ght ($l i ght 1) ;
14 $ct l - >st ar t ;

Class modules carry the “.pm” �le extension. Among the four source �le listings above,
the �rst three are Perl class modules, representing the classesTimer , TrafficLight and
Controller respectively. The last listing, tlight1.pl is the main program that usesthe Perl
classesdeveloped to carry out the required functionality . You will �nd that if a program
is developed entirely with the object-oriented paradigm the main program is usually short
becauseimplementations are delegated to modules.

On lines 5-6 of tlight1.pl , we import the classesneeded. In the next section, we would
see that use() is a wrapper of require() which is usually the preferred way of importing
modules so that they can be used thereafter in the program. Then we create one object of
TrafficLight and Controller respectively. After associating the TrafficLight object with
the Controller object, what is left to do is to invoke the start() method of the Controller
object.

On execution you would then see messagesprinted at regular intervals, corresponding to

118 Chapter 7 Object-Oriented Programming

the colour of the traf�c light at that instant. The colours keep on alternating and to quit this
program you need to pressCtrl-C.

Chapter 8

Files and Filehandles

8.1 Introduction

The ability to read from and write to �les is nearly always essential to computer programs.
Output is frequently generated in the course of execution of a program. However , if they are
not stored in secondary storage media such as disks, they will disappear once the power is
switched off. Therefore, �le accessis an important element of the input/output system. In
this chapter, we will explore the general Perl input/output system and the functions we can
use to accessthe �lesystem.

Similar to the C standard and to be in line with Unix concepts,Perl usesthe concept of �le-
handles to representan opened �le. They are also known as �le descriptors in programming
languageslike C. Although I did not mention explicitly , actually you have beenworking with
�lehandles throughout the tutorial. The statement

print "Hello World!";

Appeared in the very �rst Perl program covered in this tutorial, it implicitly usesa �lehandle
to get the string print ed on the screen. This statement is actually written as

print STDOUT"Hello World!";

However , the �lehandle STDOUTis assumed by default, so we have been omitting it all the
way up to this chapter. Unix has a generalized view of input and output. Apart from
�les, hardwar e devices are also represented as �les on a Unix �lesystem. Therefore, input
and output of hardwar e devices can be represented by input and output of �les, through a
�lehandle. This generalized view helps abstract a user or programmer from the peculiarities
of the implementation of each device, which are left to the device drivers that exist in the
operating system kernel, allowing usersto interact with a device in a uniform manner. With a
strong Unix tradition, Perl adopts a similar notion aswell. Even if you don't useany �avours
of Unix at all it does not mean you don't have to read this chapter, becausePerl uses the
same concepts on any of the platforms it run on, so that a considerable degree of platform
independence can be achieved.

119

120 Chapter 8 Files and Filehandles

8.2 Filehandles

Perl has a number of prede�ned �lehandles, namely STDIN, STDOUTand STDERRthat you can
use in command line applications for input/output on screen. STDIN, or standard input, is
the �lehandle from which keyboard input can be read. STDOUT, or standard output, is where
you should send the output of your program. STDERR, or standard error, is mostly used
for outputting warning or error messagesbecause sometimes people wouldn't like error
messagesto be displayed. By dumping error messagesto a separate�lehandle the user may
decide whether to display them or instead redirect them to, for example, a log �le on disk
for diagnosis at a later time. Thesethree�lehandles are always ready for you to use and you
don't need to createthem manually.

Filehandle is one of the data types available in Perl. As you have learnt in the chapter on
references,�lehandle has a separateslot in a symbol table entry. However , unlike other data
types you do not have to pre�x a �lehandle with a type symbol. By convention, �lehandles
are in all capital characters to make them visually stand out from names of functions and
subroutines etc.

8.2.1 open a File

Unless you are working with one of the prede�ned �lehandles, the �rst step you should take
is to populate a �lehandle. A populated �lehandle representsan active stream which allows
input or/and output of data. For the caseof �le access,a populated �lehandle representsan
open ed �le, which is then used by the input/output functions to read from or write to the
�le. Filehandle is also used in Perl socket programming which is used to representa socket.
However , due to time constraints network programming is not covered in the �rst edition of
this tutorial.

Unix supports two setsof �le accessfunctions. One set is provided by the operating system
kernel, and the other set is provided by the standard C libraries installed on the system,
which is implemented on top of the version provided by the kernel. The �le accessfunctions
in Perl are actually interfaces to these functions. Perl allows accessto both, through the
open() function which invokes the version provided by the C libraries, and the sysopen()
function invokes the operating system version. The use of open() is generally preferred to
sysopen() , becauseit is simpler to use,but sysopen() is more powerful.

You use the open() function to open a �le. Usually, the open() function takes on one of the
following forms:

open FILEHANDLE, EXPR
open FILEHANDLE, MODE, EXPR

FILEHANDLE is either a �lehandle or a lexical variable with the undef value, which is used by
the open() function to store the referenceto the �lehandle created. EXPRis a scalarexpression
which contains the name of �le to open() , and MODEdescribesthe accessmode to apply to the
�le, for example, whether read or write accessare allowed on the �le. If MODEis missing, it
defaults to “ <”, the read-only mode. Otherwise, MODEshould be prepended to EXPRin the �rst
form, where MODEis missing. If open() is successful, it returns a nonzero value. Otherwise,
undef is returned. You should always check the return value of �le accessfunctions and
handle casesof failur e to ensure your program is fault tolerant, especially if your program is

8.2 Filehandles 121

to be used by other people instead of you, such asCGI scripts.

Traditionally , a �lehandle is usually used instead of a lexical �lehandle reference.For example,

my $retval = open(LOG, "<command.log");

which createsLOGpermanently on the symbol table of your current package. This may be
acceptableto you, but you may wish to local ize it to a certain subroutine, for example. As a
recapitulation, this is the way to do it:

local *LOG;
my $retval = open(LOG, "<command.log");

However , because �lehandles themselves cannot be lexical, and many Perl programmers
are not familiar with the use of typeglobs, a better way would be to use a lexical �lehandle
reference,which you can easily pass around without needing any knowledge in typeglobs.
An example is

my $fhLOG;
my $retval = open($fhLOG, "<command.log");

Here is a summary of the 6 accessmodes provided:

MODE Description
< Read-only access.Speci�ed �le must exist.
+< Read-write access.Speci�ed �le must exist.
> Write-only access.File emptied if exists;created otherwise.
+> Read-write access.File emptied if exists;created otherwise.
>> Append-only access(�le pointer at end-of-�le). File created if not exist.
+>> Read-Append access(�le pointer at end-of-�le). File created if not exist.

Table8.1: FileAccessModesfor open()

Theseaccessmodes determine the operations that can be applied on a �le. If you open() a
�le with read-only accessbut you try to write data to the corresponding �lehandle, a runtime
error will occur.

Every open �le has a �le pointer , which determines the position of the next character read
or write. The �rst four modes listed above position a �le pointer at the beginning of a �le,
so that read/writes occur at the beginning of the �le. < grants only reads accessto the �le.
> grants only write accessto the �le, which is automatically created if it does not exist, and
empties it before writing. Both +< and +> grants read-write accessto the �le, so you may read
from as well as write to the �lehandle. The dif ferencebetween +< and +> is that for +<, the
speci�ed �le must exist, while for +> the �le is automatically created if it does not exist, and
empties the content before writing. The last two modes place the �le pointer at the end of a
�le. Therefore, data are written at the end of the �le. A �le opened with either of these two
modes is created where necessary.

122 Chapter 8 Files and Filehandles

Note that +< does in-place writing. If �le write occurs in the middle of a �le, it simply
overwrites the exactnumber of charactersfrom the �le pointer required by the write, growing
the �le as necessaryand other characters in the �le are unaffected. The effect is similar to
putting your text editor in “r eplace” or “overwrite” mode and typing charactersat a cursor
to overwrite the old text.

8.2.2 Output Redirection

Output redirection allows you to redirect output sent to a certain �lehandle to another
�lehandle. This is frequently used by shell script authors on Unix systems to redirect error
messagesto log �les or simply to throw them away asif they have not beenoutput at all.

To use I/O redirection, specify “ >&” as the MODE, and EXPRis the name of the �lehandle to
which output to FILEHANDLEis redirected. An example is shown below, which redirectsoutput
that aresent to STDERRto a �le that hasbeenpreviously open ed with the �lehandle LOGinstead.

open (STDERR, ">&LOG");

Texts that are sent to STDERRwill be redirected to a �le instead, so they are no longer output
on screen.

8.3 File Input and Output Functions

In this section, I will intr oduce to you various functions you can use to read from or write
to a �lehandle. Note that in functions expecting a �lehandle as its argument you can use
a lexical �lehandle reference instead of a typeglob. Simply replace the �lehandle with the
lexical variable, for example, <$fhLOG>.

8.3.1 readline() — ReadsA Line from Filehandle

The readline() function acceptsa typeglob as parameter to read a line from the �lehandle
contained in the typeglob. In scalar context, each invocation of readline() reads up to the
newline character. When no more lines can be read, undef is returned. An example is shown
below, which copies a text �le File1.txt to File2.txt.

open FILE1, "<File1.txt" or die "Cannot open File1.txt!";
open FILE2, ">File2.txt" or die "Cannot open File2.txt!";
my $line;
while ($line = readline(FILE1)) {

print FILE2 $line;
}
close FILE1;
close FILE2;

However , customarily readline() is not frequently used becausePerl provides an operator
<FILEHANDLE> which is an interface of readline() . We can replace readline(FILE1) above

8.3 File Input and Output Functions 123

with <FILE1> .

In list context, both readline() and <FILEHANDLE> read all the way until end-of-�le occurs,
and split it into lines. The return value is an array with its elementsbeing the lines extracted.
This is seldom used in practice, becauseif the incoming �le is very large, the generated array
will also be very large, consuming a lot of memory space.Therefore, it is a lot safer to set up
a loop to read in line by line asshown above.

8.3.2 binmode() — Binary Mode Declaration

Not knowing if you are aware or not, text �les actually are stored dif ferently on Unix and
MS-DOS/W indows systems. The culprit is that the line termination characters used on
these platforms are dif ferent. That's why there is an ASCII/Binary transfer mode option in
your FTP application. Binary �les do not rely on line termination characters to denote the
end-of-line. Therefore, a binary �le is representedin an identical manner on theseplatforms.
However , becausetext �les usesline termination characters,and they vary from platform to
platform, two �les with identical textual content end up being representeddif ferently.

To ensure Perl programs have high levels of portability , in general Perl programmers simply
have to treat nn as the line termination character. This is what we have readily assumed
from the very beginning of this tutorial, and the underlying system carries out all necessary
conversions for us automatically. However , this systemdoesnot work for MS-DOS/W indows
systems becausethey distinguish between text �les and binary �les. Therefore, on these
systemsPerl needsto intr oduce a PerlIO layer on top of the native �le accessfunctions which
converts between the underlying line termination charactersand nn. This does not pose any
problems for text �les, asthis conversion is actually intentional for text �les. However , binary
�les should never bealtered in any way. binmode() with just a single parameter of FILEHANDLE
essentially instructs all read/write through the �lehandle to bypass the conversion layer.
Becausebinmode() is ignored on other systems,you should generally use it on all binary �les
for portability . It should be invoked right after a �le is open ed, i.e.

open BMP, "<logo.bmp";
binmode BMP;

If binmode() has two parameters, the second parameter indicates the PerlIO layers to apply
which act asconversion �lters. The “crlf ” layer is the layer we mentioned above for MS-DOS
compatible systems which carries out line termination conversions. Usage of this form is
generally not neededasthe defaults are generally adequate for most programming purposes,
and so are not described here.

8.3.3 read() — ReadsA Speci�ed Number of Characters from Filehandle

The syntax of read() is

read FILEHANDLE, SCALAR, LENGTH[, OFFSET]

which reads from FILEHANDLE LENGTHcharacters,usually equivalent to bytes and assign it to
the scalar SCALAR. If OFFSETis given, it speci�es the zero-basedoffset of SCALARfrom which to

124 Chapter 8 Files and Filehandles

start writing.

This is usually used for binary �les, but not necessarily. The �le copying program shown
above should generally not be used becausebinary �les are not line oriented, and it does not
use binmode() which causes�le copying errors on MS-DOScompatible systems.Presumably
the correct way is asfollows:

sub copy ($$) {
my ($src, $dest) = @_;
open FILE1, "<$src" or die "Cannot open $src!";
open FILE2, ">$dest" or die "Cannot open $dest!";
binmode FILE1;
binmode FILE2;
my ($buffer, $numChars); my $bufferSize = 1024;
my $size = 0;
while ($numChars = read(FILE1, $buffer, $bufferSize)) {

$size += $numChars;
print FILE2 $buffer;

}
close FILE1;
close FILE2;
return $size;

}

8.3.4 print()/printf() — Output To A FileHandle

We have used print() quite a lot so it is not worthwhile repeating all the details here again.
However , if a �lehandle is speci�ed, it outputs to the �lehandle. Otherwise, the �lehandle
defaults to STDOUT, as I mentioned earlier in this chapter.

printf() is similar to print() . However , it is an exceptionally powerful function that lets you
perform varieties of type conversions on the �y . printf() is an artifact from the C standard
I/O library . In C, generating a string is not a simple affair, becausethere is no variable
interpolation as in Perl and there is not an easy and �exible way of string concatenation.
Also, becauseC is strongly typed and you cannot concatenatea C-style string with other data
types, for example, a number, you have to end up performing a lot of type conversions before
the desired string can be successfully generated and eventually written to a �le descriptor.
Therefore, for convenience purpose C provides a set of functions collectively known as the
printf() family of functions which allows generation of many common forms of string to be
completed in one function call.

While this function is very versatile it is also acclaimed as the most complicated function in
C. This function works by constructing a concisebut generally cryptic format string, which
consists of the string with some placeholder �elds inserted. These placeholder symbols
describe the type conversion operation required for eachof the �elds to be inserted into the
string, which are passedas additional arguments to the printf() function. printf() is one
of the several few C builtin functions which accept a variable number of arguments. The
complexity lies completely in constructing the proper format string. While Perl has �exible
string interpolation and automatic type conversions, printf() is not as important as in C.
Mor eover, because printf() involves additional operations, it is less ef�cient compared

8.3 File Input and Output Functions 125

with print() . Therefore, you should avoid it if print() suf�ces for the purpose. However ,
becauseit is indeed handy for certain kinds of conversion operations, I am going to describe
it below. In Perl's implementation, another function sprintf() exists. It returns the generated
string instead of dir ecting it to a �lehandle. Otherwise, it is identical to printf() . In fact,
printf() is internally implemented using sprintf() . This is intended to be an intr oductory
description of most frequently used options only. For more information, please read the
perlfunc/sprintf manpage.

The following sprintf() example, however simple, gives you a tasteof what it is like:

"Good Morning. The number is 6."
sprintf("%s. The number is %d.", "Good Morning", 6);

The format string is just a string with placeholders inserted. Placeholders start with the %
character. Placeholders are replaced by the corresponding arguments given after the format
string with the speci�ed type conversion operations performed.

8.3.5 seek() — SetsFile Pointer Position

seek FILEHANDLE, POSITION, WHENCE

You may use the seek() function to set the position of �le pointer in a �le speci�ed by
FILEHANDLE. POSITION is a signed integer indicating the new position, relative to the position
indicated by WHENCE. WHENCEis an integer which is either 0, 1 or 2 representing the beginning-
of-�le, the current �le pointer position and the end-of-�le respectively. However , because
hard-coding these integer values is not semantically obvious, we usually use the names of
the corresponding constantsavailable in the C standard I/O library instead. Theseconstants
are de�ned in the Perl Fcntl module. You can import the threeconstantsby

use Fcntl ':seek';

The constants are SEEK SET, SEEK CURand SEEK ENDrespectively. After you have imported
them, you can use them dir ectly in your programs. seek() is frequently used with binary
�le access.Binary �les usually have their data stored in a certain format that allows ef�cient
accessof data. To achieve this, some �elds are encoded and saved at �xed positions in a
binary �le, which you may accessdir ectly with the seek() function. The new position is
calculated as the sum of POSITION and the baseposition indicated by WHENCE. Here are some
examples:

seek(FILE, 0, SEEK_SET); # Jump to beginning of file
seek(FILE, 5, SEEK_CUR); # Jump 5 bytes forward
seek(FILE, -1, SEEK_END); # Jump to last byte of file

8.3.6 tell() — Returns File Pointer Position

The tell() function returns the position of the �le pointer, in bytes. This function returns
meaningful values only if used on an open() ed �le. The position is a zero-basedoffset from
the beginning of the �le speci�ed by the �lehandle which is passed as the parameter. It is

http://www.perldoc.com/perl5.8.0/pod/func/sprintf.html

126 Chapter 8 Files and Filehandles

frequently used with seek() to move the �le pointer about in a �le for reading or writing.
This is an example which deducesthe size of a �le by using seek() and tell() :

use Fcntl ':seek';

sub getFileSize ($) {
my $filename = $_[0];
local *FILE;
open FILE, "<$filename" or return undef;
seek(FILE, 0, SEEK_END);
my $size = tell(); # last filehandle read is FILE
close FILE;
return $size;

}

my $filename = $ARGV[0];
print "$filename\t\t", getFileSize($filenam e) , " Bytes \n";

However , on a system that supports stat() this can be satisfactorily replaced by

(stat($filename))[7]

8.3.7 close() — Close An open ed File

At the end, when you have �nished working with a �lehandle, you should close() it. Simply
passthe �lehandle as the parameter to close() .

8.4 Directory Traversal Functions

In this section, I will intr oduce to you various functions you can use to traverse the dir ectory
structure of your system. Note that you ought to be using File::Find , which is easier to use
and more �exible. In fact, it usesthe functions that we cover below. However , some simple
dir ectory traversal operations may be more ef�cient if you implement them dir ectly.

Description of the functions is presented�rst. You will �nd a full example afterwards which
usesthesefunctions to build a classwhich performs �le search.

8.4.1 opendir() — Opens A Directory

opendir DIRHANDLE, PATH

This function prepares the dir ectory PATHfor subsequentdir ectory traversal functions. If the
dir ectory exists,a true value is returned, and populates DIRHANDLEwhich is a �lehandle.

8.4 Directory Traversal Functions 127

8.4.2 readdir() — ReadsDirectory Index

readdir DIRHANDLE

The readdir() function reads the content of the dir ectory referred to by DIRHANDLE, which is
populated by the opendir() function. In scalar context, each readdir() invocation returns
an entry in the dir ectory. When there is no more entry, undef is returned. This is similar to
the behaviour of read() saw earlier. You may also get all the entries in one go by calling the
function in list context, and an array containing all the entries inside will be returned.

8.4.3 Example: File Search

In this example, we will write a class that allows users to search for a �le recursively in a
dir ectory treewhose name matching a pattern speci�ed by the user. The pattern is in the form
of a regular expression for convenience purpose. It is by no means versatile as File::Find ,
but it will give you an idea of how to use the dir ectory traversal functions.

EXAMPLE 8.1 File Search

1 # Fi l eSear ch. pm
2 # An Exampl e Fi l e Sear ch modul e
3
4 package Fi l eSear ch;
5
6 # Cr eat e a new cl ass i nst ance (obj ect)
7 sub new {
8 my $ar g0 = shi f t ;
9 my $cl s = r ef($ ar g0) | | $ar g0;

10 my $t hi s = { } ;
11 bl ess $t hi s , $cl s ;
12 $t hi s - >i ni t i al i ze(@_) ;
13 r et ur n $t hi s ;
14 }
15
16 sub i ni t i al i ze {
17 my $t hi s = shi f t ;
18 my %opt i ons = @_;
19 f or each (keys %opt i ons) {
20 $t hi s - >{$ _} = $opt i ons {$ _} ;
21 }
22 }
23
24 sub f i nd {
25 my ($t hi s , $pat h) = @_;
26 my @mat ches = ();
27 my $pat t er n = $t hi s- >{ ' PATTERN' } ;
28 l ocal * DI RENT;
29
30 opendi r DI RENT, $pat h or r et ur n ();
31
32 # Get a l i st of ent r i es i n t hi s di r ect or y ,

128 Chapter 8 Files and Filehandles

33 # and sor t i t l exi cogr aphic al ly
34 my @ent r i es = sor t { l c($a) cmp l c($b) } r eaddi r (DI RENT) ;
35
36 f or each my $f n (@ent r i es) {
37 my $ent r y = " $pat h/ $f n" ;
38
39 # Recur si ve sear ch i f t he ent r y i s a di r ect or y ,
40 # We shoul d i gnor e . and . . i n our sear ch
41 i f (-d $ent r y and $f n ! � m/ ˆ \ . \ . ?$/) {
42 push @mat ches , $t hi s- >f i nd($ent r y);
43 }
44 $f n =� m/ $pat t er n/ and push @mat ches , $ent r y ;
45 }
46 cl ose DI RENT;
47 r et ur n @mat ches ;
48 }
49
50 1;

The program below uses this module, getting the root of the search as well as the search
pattern from user input, and usesthe module to get a listing of �les found. Finally, the list of
�les together with the corresponding �le sizesare displayed:

1 #! / usr/b i n/ per l - w
2
3 use Fi l eSear ch;
4
5 my ($pat t er n, $di r r oot) ;
6
7 pr i nt " Pl ease speci f y t he f i l ename pat t er n by means of a r egul ar expr essi on: \n {

>> " ;
8 chomp($pat t er n = <STDI N>);
9 pr i nt " Pl ease speci f y t he r oot of di r ect or y t r ee t o be sear ched: \n> > " ;

10 chomp($di r r oot = <STDI N>);
11
12 my $sear chobj = new Fi l eSear ch('P ATTERN' => $pat t er n);
13 my @r esul t = $sear chobj - >f i nd($di r r oot) ;
14
15 f or each (@r esul t) {
16 pr i nt $_, " (" , (st at ($_)) [7] , " byt es) \n " ;
17 }

The transcript of a sample session is shown below. It searches for �les whose extension is
.pm. Therefore,a list of Perl modules in the dir ectory treeis shown.

cbki hong@cbkih ong: � /d ocs/ per l t ut / sr c / f i l es$ per l sear ch. pl
Pl ease speci f y t he f i l ename pat t er n by means of a r egul ar expr essi on:
>> ˆ . * \ . pm$
Pl ease speci f y t he r oot of di r ect or y t r ee t o be sear ched:

8.5 File Test Operators 129

>> / home/ cbki hong/d ocs/ per l t ut
/ home/ cbki hong/ docs/ per l t ut / scr ap/ Number . pm (344 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ Cont r ol l er . pm (916 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ St at s . pm (1264 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ St at s2.p m (779 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ St at s3.p m (425 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ Test Obj ect . pm (198 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ Ti mer . pm (1011 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / ch06/ Tr af f i cLi ght . pm (642 byt es)
/ home/ cbki hong/ docs/ per l t ut / sr c / f i l es / Fi l eSear ch. pm (796 byt es)

The chomp() function removes the trailing newline character from the variable containing an
input string if one is present. Note that the argument must be an lvalue becauseit performs
in-place editing of the string instead of returning the modi�ed string.

The FileSearch::find() method is a recursive subroutine which takes a single parameter,
that is the basedir ectory in which to search for �les matching the speci�ed pattern, which is
passedto the FileSearch object upon instantiation. The search itself is a depth-�rst search.
That means at each level, for each dir ectory entry the content of the dir ectory is searched
before the next dir ectory is searched. Note that we have to avoid . and .. in eachdir ectory. In
Appendix C in my discussion of hard links I explain what thesetwo entries are. They refer to
the current and the parent dir ectory, respectively. Becausethey go up instead of go down the
dir ectory tree,we should not delve into them.

This program looks �ne. However , this search implementation can cause the search to go
into an in�nite loop on Unix systems in a certain case. That happens if two path segments
on a path point to the same inode. First, let us agree on the terminology �rst. A path like
/a/b/c/d consistsof four path segmentsa, b, c and d. Now, let us assumeb and d point to
the samedir ectory inode (for an exhaustive explanation of inodes, pleaseread Appendix C).
Now c is a dir ectory inside b. However , c is also a dir ectory inside d becauseb and d are
actually just two aliasesrepresenting the same inode. Therefore, /a/b/c/d/c is still a valid
path, and we can �nd the dir ectory entry d inside, so we have the path /a/b/c/d/c/d. It is
obvious that this circularity will continue endlessly, and obviously you will go into an in�nite
loop as a result. This is exactly the reasonwhy we have to avoid delving into . and .. in the
program. Therefore, this problem normally should not occur. It only ariseswhen a hard link
is created manually that makes two dir ectories point to the same inode. The core dif �culty
is that you cannot easily identify this circularity in the program becaused appears exactly
like any other dir ectory entries. You are hereby asked to think of a way to patch this potential
problem. (hint: usestat())

8.5 File Test Operators

Perl provides you with a set of �le test operators that you can use to test a �le against certain
properties and return a truth value. Table 8.2 lists the most commonly used operators:

Note that many of theseoptions are speci�c to Unix operating systems. -e , -f , -d , -z and -s
can be used on most operating systems. The only parameter is either a �lename or, in case
the �le has already been open ed, its �lehandle. For example, to ensure a certain regular �le
(abc.txt) exists,you can issue the following statement:

130 Chapter 8 Files and Filehandles

Operator Description
-r File is readableby effective user or group.
-w File is writable by effective user or group.
-x File is executbleby effective user or group.
-o File is owned by effective user.
-R File is readableby real user or group.
-W File is writable by real user or group.
-X File is executbleby real user or group.
-O File is owned by real user.
-e File exists.
-z File is empty (zero size).
-s File is not empty, size in bytes asreturn value.
-f File is a regular �le.
-d File is a dir ectory.
-l File is a symbolic link.
-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

Table8.2: FileTestOperators

(-e "abc.txt" && -f "abc.txt")
or die "abc.txt not found or is not regular file!\n";

Notice there are two setsof operators to test whether a �le is readable/writable or executable.
In general, you should usethe lowercaseversion instead of the uppercaseversion becausethe
lowercaseversion usesthe effective user or group identity , which always re�ect the identity
of the user or group under which the program is executed. You can get further information
on effective and real user and group in Appendix C with respectto setuid or setgid �les.

8.6 File Locking

File locking, or locking in general, is just one of the various solutions proposed to deal with
problems associated with resource sharing . Sharing of resources frequently arises in our
everyday life. Driving on a highway, boarding an elevator etc. are all manifestations of
utilization of shared resources. In a computer program, you — the developer — have access
to disks, peripheral devices etc. within a program that appears to be self-contained, which
in turn leads you into thinking your program has exclusive accessto these resources. No,
you don't. Resource sharing is equally ubiquitous as, if not more than, in your daily life.
In your computer system there may be a few hundr ed programs in execution (processes).
Many of them are hidden so you may not know they are running. However , with just one
Central ProcessingUnit (CPU) only one of them can be executed at any instant. Therefore,
the CPU actually performs a context switch at regular, but very short intervals when a
currently-r unning processis suspended from execution by the CPU with its execution state
saved,and another processis resumed. This context switch is performed so frequently that to
a user there is a perception that all processesare executedconcurrently, but they'r e not. This
is already one example of resourcesharing, and the solution is to intr oduce �ne-grained time

8.6 File Locking 131

slicing . Similarly , all programs that are executing have accessto the disks. Therefore, it is not
surprising that when a program is accessinga disk it is possible you can �nd another one that
is also trying to accessthe disk at the sametime, too.

File locks are intr oduced to set temporary restrictions on certain �les to limit how they can
be shared among dif ferent processes.Depending on the nature of an operation, we come up
with two types of locks. The �rst type is a shared lock, and another one is an exclusive lock.
With respect to �les, read accesscan be shared by multiple processesbecauseread access
doesnot result in any changesto the stateof the shared resource.Therefore,a consistent view
of the shared resourcecan be maintained. Write access,however, should by nature be carried
out with exclusive accessuntil the write operation is complete. Another write operation to
the �le which occurs before the current one is complete should be queued (certain casesmay
require it be cancelled instead, depending on the nature of the operation). A read access
cannot be concurrent with a write accesseither becausethe write accesswill destroy the
consistent view expected by the read accesswhile it is still reading (for example, the write
operation may be to delete the �le altogether, while the read operation is still in its midway).
Therefore, the solution is to intr oduce shared locks for read access,while exclusive locks for
write access. Multiple concurrent shared locks are allowed. However , exclusive locks are
mutually exclusive.

On most Unix systems as well as platforms in the Micr osoft Windows NT family (including
Windows 2000,XP and Windows Server2003asof this writing) you may usea handy flock()
function. Pleaseseethe “Function Implementations” section of the perlport manpage to see
any platform-speci�c issuesfor your platform. Here is an example demonstrating �le locking:

1 #! / usr/b i n/ per l - w
2
3 # wr i t er .p l
4 # Wr i t es i nt o myf i l e. dat
5
6 use Fcnt l ' :f l ock ' ;
7
8 open(FI LE, " >>myf i l e. dat") or di e " Cannot open myf i l e. dat! \ n" ;
9

10 pr i nt " [$ $] Request i ng excl usi ve wr i t e l ock f or myf i l e. dat . \n " ;
11 f l ock(FI LE, LOCK_EX);
12 pr i nt " [$ $] Request ed excl usi ve wr i t e l ock f or myf i l e. dat. \ n" ;
13
14 pr i nt " [$ $] Wr i t i ng (appendi ng) t o myf i l e.d at. \n " ;
15 # Any wr i t e oper at i ons shoul d be put i nsi de
16 f or each ($ARGV[0] . . $ARGV[1]) {
17 pr i nt " [$ $] Wr i t i ng $_\ n" ;
18 pr i nt FI LE " $_ (pr ocess i d $$) \n " ;
19 sl eep 1; # sl eep one second
20 }
21
22 f l ock(FI LE, LOCK_UN); # r el ease l ock
23 pr i nt " [$ $] Rel eased excl usi ve wr i t e l ock f or myf i l e.d at. \n " ;
24 cl ose FI LE;

1 #! / usr/b i n/ per l - w

132 Chapter 8 Files and Filehandles

2
3 # r eader .p l
4 # Reads f r om myf i l e.d at
5
6 use Fcnt l ' :f l ock ' ;
7
8 open(FI LE, " <myf i l e.d at") or di e " Cannot open myf i l e.d at! \n " ;
9

10 pr i nt " [$ $] Request i ng shar ed r ead l ock f or myf i l e.d at. \n " ;
11 f l ock(FI LE, LOCK_SH);
12 pr i nt " [$ $] Request ed shar ed r ead l ock f or myf i l e. dat . \n " ;
13
14 pr i nt " [$ $] Readi ng f r om myf i l e. dat. \ n" ;
15 whi l e (<FI LE>) {
16 sl eep 1;
17 pr i nt $_;
18 }
19
20 f l ock(FI LE, LOCK_UN); # r el ease l ock
21 pr i nt " [$ $] Rel eased shar ed r ead l ock f or myf i l e. dat. \n" ;
22 cl ose FI LE;

This example consistsof two programs, namely the writer and the reader. The writer program
writes some sample data into a data �le, while the reader program reads from the data �le
previously written data. The writer takes two command-line parameters which determine
the values to be written to the data �le. It �rst acquires an exclusive lock. When the lock is
acquired, it starts writing the values to the �le. When the write operation is complete, the
lock is released. The reader works in a similar manner. It �rst acquires a shared lock, and
when one is acquired it starts reading from the �le. At the end, the shared lock is released.To
try this example, open two or more commnad-line windows on your desktop environment
and try dif ferent combinations, such as a writer in a window and a reader in another
(writer -reader), reader-reader and writer -writer . Take the writer -reader asan example, when
you executethe writer program in one window by

perl writer.pl 1 15

That means 15 lines of records will be written into the data �le. You will see that there is
a 1-second pause between each write, becauseof the sleep() function. It is inserted after
eachwrite or read so that you can have ample time to switch to another window to execute
another writer or reader instance. Now switch to another window and start the reader before
the writer has �nished writing. No command-line parameters are needed for the reader. You
will �nd that the reader stalls while trying to acquire a shared read lock becausean exclusive
lock is already in place. When the writer completes, the reader will be able to get the shared
lock and proceedswith reading. If you try the reader-reader combination, you ought to �nd
that concurrent readersare allowed, which agreesto what I told you earlier.

flock() accepts two parameters. The �rst one is the �lehandle. The second argument
indicates the locking operation required. Just like the casefor seek() , it is just an integer
whose mnemonic constants can be found by importing the Fcntl module, by importing the
symbol `:�ock'. The shared lock is representedby LOCKSHand the exclusive lock by LOCKEX.

8.6 File Locking 133

To releasea lock you can specify LOCKUN. You may optionally bitwise-or LOCKNBwith either
LOCKEX or LOCKSH to indicate non-blocking. As demonstrated in the example, an flock()
call will be blocked until the lock is acquired. With this optional �ag, you may chooseto skip
if it fails and do something else,or you may retry it later on. The prede�ned variable $$ refers
to the current processID. It is displayed as well as saved to �le to let you easily identify the
various processes.

134 Chapter 8 Files and Filehandles

Chapter 9

Regular Expressions

9.1 Introduction

Now we are marching into probably the most exciting chapter in this tutorial. Regular
expressions (regexps, or even RE) are what makes Perl an ideal language for “practical
extraction and reporting”, as the name implies. To give you an idea, let me �rst give you an
overview on how to perform pattern matching in Perl.

First, you construct the regular expression, which is essentially a sequenceof characters
describing the pattern you would like to match. The term “pattern” may seem a little bit
foreign to you, but you may actually have had someexperienceof it already. For example, in
MS-DOS if you would like to list all �les with the extension .txt (presumably text �les), you
may issuea command like

dir *.txt

On Unix-like operating systems,similarly , you can specify

ls *.txt

The “ *.txt ” here can be described asa pattern as it is the speci�cation used by the operating
system (strictly speaking, the shell, i.e. the program in charge of reading commands from
you and displaying output) to look for the �les that has to be displayed. This is a very simple
pattern, but Perl provides users with a very powerful set of regular expressionsthat can be
used to specify the patterns, so you can make your search speci�cation more speci�c. After
constructing the regular expression,you can then bind the data to be searched (for example,
text �les or just a line of user input) to the pattern using the binding operators =� or ! � .
In this process,you have provided the Perl regexp engine with both the data to search for
and the data to be searched. The return value indicates if pattern matching is successful. If
it is successful,you may want to store the data temporarily , or in a �le, or export the results
dir ectly to the standard output.

Regular expressionsare used in Perl in a number of ways:

? Search for a string that matchesa speci�ed pattern, and optionally replacing the pattern
found with someother strings

135

136 Chapter 9 Regular Expressions

? Counting the number of occurrencesof a pattern in a string

? Split a formatted string (e.g. a date like 02/06/2001) into respective components (i.e.
into day, month and year)

? Validation of �elds received from submitted HTML forms by verifying if a piece of data
conforms to a particular format

? ... and much more

Regular expressionsare not exclusive to Perl only. It is a vital component in Unix and other
Unix-like operating systemslike Linux to provide userswith powerful text search and replace
capabilities. You may �nd that many software on Unix, like grep and awk, allows users to
use regular expression to specify search speci�cations (although their implementations are
slightly dif ferent from that of Perl). Although this is still rare in Windows, many new software
with regexp capabilities are emerging becausemany famous Unix applications are now being
ported to Windows and other system platforms. Mor eover, a large set of Perl regexps are
now being adopted in JavaScript and JScript implementations in Netscape and Micr osoft
Internet Explorer respectively. This is a piece of good news as sophisticated input validation
can now be performed dir ectly by the end users' browsers. In this way, invalid data can
be detected without sending anything to the server that causesthe transmission delays. In
C/C++ there are also regular expressionlibraries that programmers can easily use for adding
regexp capabilities to their programs. That explains how useful regular expressionsare in
programming nowadays.

As you may know there are books dedicating in their entirety to regular expressions in
your local bookstores. Therefore, this chapter is by no means a complete coverage of
regular expressions in �ne detail. However , after you have �nished this chapter you
should appreciate how �exible and powerful regular expressions are in Perl and in Unix-
like operating systems,and how they canaccomplish tricky text manipulating taskson the �y .

9.2 Building a Pattern

9.2.1 Getting your Foot Wet

Now you will learn to build a pattern using the regular expressionsoffered by Perl. To search
for a pattern match, simply construct the pattern and put it in between the two slashesof the
m// operator. If you don't need the bells and whistles, for example, you just need to know if
the characters“ able ” appear in any given string, the pattern is assimple as:

m/able/

Let's put this to a test. Now, to seeif this pattern occurs in the string “ Capable ”, we bind the
twos together by using the binding operator =� . Try this script:

1 i f ("Capabl e" =� m/abl e/) {
2 pr i nt " mat ch! \n " ;
3 } el se { # Thi s shoul d NEVER happen
4 pr i nt "n o mat ch! \n" ;
5 }

9.2 Building a Pattern 137

There is not many things special here. Becausethe pattern “ able ” is in the string “ Capable ”,
the wor ds “ match! ” will be displayed. I intentionally use the literal “ Capable ” in the example
to show that although the symbol looks like an assignment operator, it is not necessaryfor a
valid lvalue on the left hand side of the binding operator (remember lvalue is for assignment
operators only). You may put any piece of scalar data, including scalar variable, in place of
the string literal.

9.2.2 Introduction to m// and the Binding Operator

As you have seen in the above example, the m// operator is used for pattern matching. In
between the forwar d slashes// the pattern to match is placed. Additional options, if any, are
placed at the end after the last slash. If an expressionis explicitly bound to the operator using
the =� or ! � binding operators, that expression is searched for the pattern speci�ed. If the
binding operator is missing, as you will seein some later examples, =� is assumed and $ is
taken asthe expressionto be searched.

In scalar context, the binding operator =� returns a true value if the expression matches the
pattern, an empty string (and hence a false value) if otherwise. ! � simply inverts the logic
so that if the expressionmatchesthe pattern a false value is returned, a true value otherwise.
Therefore, the following two expressionsare equivalent:

!($expression =˜ m/pattern/)
$expression !˜ m/pattern/

Similar to double-quoted strings, the pattern may be interpolated. Therefore, you can
generatepatterns at runtime and apply them by, for example,

$expression =˜ m/$var/

Again, similar to the case of quoted strings, you may use other symbols in place of // .
However , if you use // , you may omit the pre�x m. You may wish to use other symbols
in place of // if your pattern is heavily slashed, for example, to match a Unix path name
/var/logs/httpd/er ror log in an expression you have to escapethe forwar d slashes(to be
covered later) like this:

$expression =˜ m/\/var\/logs\/http d\/ err or_ lo g/

In the manual pages, this is described as the leaningtoothpicksyndrome(LTS) where a lot of
forwar d and backward slashesare present,making the pattern itself dif �cult to recognize. If
you changethe symbol to, for example, j, then the entire pattern suddenly becomesclear:

$expression =˜ m|/var/logs/httpd/e rro r_l og|

This is just one of the methods to remove the leaning toothpick syndrome. We will talk about
the m// operator in more detail later in this chapter, together with the options you may use. I
am just giving you a tasteof it now anyway.

138 Chapter 9 Regular Expressions

9.2.3 Metacharacters

The list of metacharacterssupported in Perl are listed in Table 9.1.

Metacharacter Default Behaviour
n Quote next character
ˆ Match beginning-of-string
. Match any character exceptnewline
$ Match end-of-string
| Alternation
() Grouping and savesubpattern
[] Character class

Table9.1: Metacharactersin Perl

Metacharactersserve speci�c purposes in a pattern. If any of thesemetacharactersare to be
embedded in the pattern literally , you should quote them by pre�xing it by n, similar to the
idea of escaping in double-quoted string. In fact, the pattern in between the forwar d slashes
are treatedasa double-quoted string. For example, to match a pair of empty parenthesesand
executea code block if they can be found, the code should look like

if ($string =˜ m/\(\)/) {
...

}

In the previous section we mentioned the leaning toothpick syndrome. Apart from changing
the delimiters of the m// operator, you can suppress the effect of metacharacters by using
the nQ ... nE escapesequence. This does not suppress interpolation, however. This is
demonstrated in the following example:

$expression =˜ m/\Q/var/logs/httpd /er ror _lo g\ E/

j speci�es alternate patterns where matching of either one of them results in a match. These
patterns are tried from left to right. The �rst one that matches is the one taken. Usually, j
are used together with parentheses() to indicate the groupings preferred. Theseare some
example patterns:

m/for|if|while/ # A match if either 'for', 'if' or 'while' found
m/a(a|b|c)a/ # A match if either 'aaa', 'aba' or 'aca' found

Apart from indication of grouping, the use of parenthesesalso carries another behaviour. If
there is a pattern match, the expressionmatched by a grouped pattern is saved. This is called
backtracking . Backtracking is covered in more detail later in this chapter.

The . metacharacter matches any character. By default, it does not match any embedded
newline charactersin a multi-line string. However , if the s option of m// is given, embedded
newline characterswill be matched. This is convenient if you have to match a pattern across
multiple lines.

9.2 Building a Pattern 139

"a\nb\nc" =˜ m/a.b/ # Not matched, because . does not match \n
"a\nb\nc" =˜ m/a.b/s # Matched with 's' option

The ˆ metacharactermatchesthe beginning of the string, and $ matchesthe end of the string.
However , if the moption of m// is given, they match the beginning and the end of each line
respectively. This is used to match individual lines inside a multi-lined string.

"a\nb\nc" =˜ m/ˆa$/ # Not matched
"a\nb\nc" =˜ m/ˆa$/m # Matched

9.2.4 Quanti�ers

Quanti�ers are used to specify how many times a certain pattern can be matched consecu-
tively . A quanti�er can be speci�ed by putting the range expression inside a pair of curly
brackets. The format of which is

f m[,[n]] g

Here are the available variations:

{m} Match exactly m times
{m,} Match m or more times
{m,n} Match at least m times but not more than n times

This example shows how you can verify if a string is an even number. Note that this ex-
ample canbefurther simpli�ed with the help of characterclasses,which we will describenext.

$string = $ARGV[0];
my $retval = ($string =˜ m/ˆ(\+|-){0,1}(0|1 |2 |3| 4|5 |6| 7| 8|9){0 ,}(0| 2|4 |6| 8)$ /) ;
printf("$string is%san even integer.\n", $retval?' ':' not ');

With dif ferent input values, dif ferent messageswill beprinted indicating whether the number
is an even integer. You may split the pattern into three sections. The �rst part, (n+j-) f 0,1 g
matches the preceding sign symbol if there is one. Note that the minimum number of times
is 0. Therefore, this part still matches if the sign symbol is absent. Right after the optional
sign symbol are the digits. We establish that an even number has the least signi�cant digit
being 0, 2, 4, 6 or 8. Therefore, on the far right we specify it as the last digit. In between the
sign symbols and the leastdigit there can be zero or more digits. This is how we arrive at this
pattern.

Perl de�nes three special symbols to represent three most commonly used quanti�ers. *
representsf 0, g; + representsf 1, g and ? representsf 0,1 g. Because+ is a quanti�er asa result,
it has to be escapedin the example pattern above.

9.2.5 Character Classes

A characterclassincludes a list of characterswhere matching of any of thesecharactersresult
in a match of the character class. It is similar in some senseto alternation, but the way they

140 Chapter 9 Regular Expressions

are interpr eted is dif ferent. A character classis constructed by placing the charactersinside a
pair of square brackets. Here I demonstrate how to rewrite the pattern in the above example
using characterclasses.

my $retval = ($string =˜ m/ˆ[+-]?[012345678 9] *[0 2468]$ /) ;

It's a lot shortened. Isn't it? All characters that appear inside the square brackets belong to
one character class. We have also used the special quanti�er symbols described above to
further shorten the pattern. But that's not the end. You can further shorten the characterclass
comprising all digits by specifying in the form of a range:

my $retval = ($string =˜ m/ˆ[+-]?[0-9]*[024 68]$/);

You may de�ne multiple ranges in a character class, for example, [a-zA-Z] matches all
lowercaseand uppercaseforms of English alphabets.

Inside a character class,if you pre�x the list of characterswith ˆ , that means any characters
that are not listed results in a match. For example, [ˆ0-9] matchesany character provided it
is not numeric.

Perl also de�nes some special character classes that contain lists of common character
combinations in pattern matching.

Character Class Content
nw Alphanumeric charactersand ([a-zA-Z0-9])
nW Neither alphanumeric charactersnor ([ˆa-zA-Z0-9])
ns Whitespace characters([nt nnnr nf])
nS Non whitespace characters([ˆ nt nnnr nf])
nd Numeric digits ([0-9])
nD Non numeric digits ([ˆ0-9])

Table9.2: SpecialCharacterClassesin Perl

Finally, our example pattern to match even integers can be simpli�ed as

my $retval = ($string =˜ m/ˆ[+-]?\d*[02468] $/);

which is now the most compact form you can attain.

9.2.6 Backtracking

Parenthesised patterns have a useful property. When pattern matching is successful, the
matching substrings corresponding to the parenthesisedparts are saved, which allow you to
savethem for further operations. For example,

9.3 Regular Expression Operators 141

$string = 'Telephone: 1234-5678';
if ($string =˜ m/ˆTelephone:\s*(\d {4} -\d {4})$ /) {

print "The telephone number extracted is '$1'.\n";
}

In this example, the telephone number extracted is saved as $1. There can be multiple
bracketed patterns in a given pattern. The matched substrings are numbered in ascending
order of position of the opening parentheses.If we changethe pattern as follows:

$string = 'Telephone: (852) 1234-5678';
if ($string =˜ m/ˆTelephone:\s*(\((\d +)\)\s *(\d{ 4}- \d{ 4}))$ /) {

print "The telephone number extracted is '$1'.\n";
print "The country code extracted is '$2'.\n";
print "The local phone number extracted is '$3'.\n";

}

The t el ephone number ext r act ed i s ' (852) 1234- 5678' .
The count r y code ext r act ed i s ' 852' .
The l ocal phone number ext r act ed i s ' 1234- 5678' .

The pattern looks more complicated then it really is. If you examine it carefully , there are
threebracketed patterns in it. The �rst one embracing the telephone number in full, including
the country code. The second and thir d are placed inside this bracket to extract the country
code and local phone number separately. The positions of the opening bracesdetermine the
ordering. Therefore, we can observe that in caseof nested parentheses,the outer one has a
smaller number than the inner one.

9.3 Regular Expression Operators

9.3.1 m// — Pattern Matching

As we have been using so far, the m// operator performs pattern matching. It supports
a number of options. We have covered m and s, and now it's time for a revision. The
s option treats the string being searched as if it consists of a single line only. By doing
so, . will match an intermediate newline character. The m option allows matching of indi-
vidual lines in a multi-line string. Here,I will intr oduce severalother commonly used options.

The i option matchesin a case-insensitivemanner. Therefore,

'ABCD' =˜ m/abc/i

results in a match. By default, pattern matching is casesensitive. Another useful option is g,
which attempts to carry out a global pattern matching on the string. In scalarcontext, a search
pointer is maintained. The search pointer is �rst initialized to the beginning of the string. In
each matching operation, matching starts from the search pointer. If a match is found, the
search pointer advancesto past the end of the matched substring. If matching fails, the search
pointer is resetto the initial position. You can use the pos() function to retrieve the position
of the current search pointer.

142 Chapter 9 Regular Expressions

You can use this option to �nd out the position of occurrencesof certain patterns in the string.
The following example illustrates this point:

$string = 'Telephone: 1234-5678';
while ($string =˜ m/(\d{4})/g) {

print "'$1' found at position " . (pos($string) - length($1)) . ".\n";
}

' 1234' f ound at posi t i on 11.
' 5678' f ound at posi t i on 16.

In list context, the m//g operator (with g) returns a list consisting of all parenthesised
substrings from the matching. Therefore,

my $string = 'Telephone: (852) 1234-5678';
my @list = ($string =˜ m/ˆTelephone:\s*(\((\d +)\)\s *(\ d{ 4}- \d{ 4}))$ /g) ;
@list = ('(852) 1234-5678', '852', '1234-5678')

results in the list

@list = ('(852) 1234-5678', '852', '1234-5678')

9.3.2 s/// — Searchand Replace

This operator is a powerful search-and-replaceengine that you can use to �exibly search for
certain patterns and replace it with a replacement string. The �rst argument is the search
pattern, just as the caseof m// . The second argument is the replacement string. As you will
soon see,backtracking is immensely useful in this regard.

The options that I mentioned above that applies to m// also apply to s/// . But there is a new
one. The option e causesthe replacement string to be treated as an expression instead of a
double-quoted string. That is, you can usea combination of operators to generatethe desired
replacement string at runtime.

Without the option g, only the �rst occurrenceof the pattern is replaced. With the option g,
all occurrencesof the pattern are replaced in one go.

Here are someexamples:

$string =˜ s/\t/' ' x 4/eg; # change all tabs to 4 spaces
$string =˜ s/ˆ(.*)\n$/$1/s; # like chomp(), to remove trailing newline

9.3.3 tr/// — Global Character Transliteration

tr/// is a convenient and ef�cient operator that changes a set of characters into another.
The �rst argument is the character list to search for. The second argument is the character
replacement list. It builds a character translation map at compile time. At runtime, it
changesany charactersthat can be found in the string into the corresponding character in the
replacement list. For example,

9.4 Putting It All Together 143

tr/a-z/A-Z/

is just an alternative way to convert charactersto uppercaseform without using uc() .

9.4 Putting It All Together

144 Chapter 9 Regular Expressions

Chapter 10

CGI Programming

10.1 Introduction

Up to this point we have been writing Perl scripts that are to be executed on the command
line. As I pinpointed early in this tutorial, the ability to write CGI programs with Perl is the
prime motive behind learning Perl for many people. In the following sections we will �rst
look at what CGI is, and understand how it allows webmasters to create dynamic content.
Towards the end, I will intr oduce security issuesconcerning CGI scripting.

10.2 Static Content and Dynamic Content

10.2.1 The Hypertext Markup Language

The earliest Web servers only serve static content in the form of Web pages, or in a more
technical parlance, HTML �les. A document written in the Hypertext Markup Language, or
HTML, is actually a plain text document with extra markup added that indicates the logical
structure of the document. For example, consider the following HTML document:

<html>
<head>

<title>A Sample HTML Page</title>
</head>
<body>

<p>This is a paragraph.</p>

T hi s is a hyperlink

</body>
</html>

This is avery simple HTML document. <p>...</p> denotesthe text in between is aparagraph.
It is then followed by an image of dimensions 80� 60. At last, we insert a hyperlink that, when
clicked by a user through a browser window displaying this document, will causethe browser
to load the resourceat the URI “http://www .cbkihong.com” into the browser window . This is
not an HTML tutorial, and if you are not familiar with HTML you should learn it �rst before
proceeding with this chapter. But what I would like to demonstrate here is that a markup
language serves to dif ferentiate dif ferent elements present in a document. In this example,
the browser, having received and parsed the HTML document, �nds out that the document

145

146 Chapter 10 CGI Programming

consists of a paragraph, an image and a link. Then the browser knows how to render the
markup and thereforecreatethe objectsspeci�ed in the browser window . Becausea hyperlink
hasdif ferent properties and actions from an image display, the browser needsa way to �gur e
out the kinds of objectspresentin the document — and that's what HTML is for.

10.2.2 The World Wide Web

HTML documents are special as they contain hyperlinks . Hyperlinks allow readersto jump
from one document to another document with a Uniform Resource Identi�er (URI). For au-
thors, hyperlinks not only make referencing internal or external destinations moreconvenient,
they also bind these separatedocuments together in the form of linkages. Therefore, with a
single URI to an HTML document a reader not only can have accessto the document identi-
�ed by the URI, but also resourceslinked to that HTML document. Such linkages bind all the
linked resourceson the Internet into a virtual network, and this is the World Wide Web we
are using every day.

The World Wide Web utilizes the Client-Server Model . First we need to establish what a
server and a client is. In everyday language, a server usually refers to a mainframe or other
powerful computational devices, in contrast to personal computers. However , in Computer
Scienceparlance, server and clients are identi�ed by their roles. A server refers to any entities
that provides services to clients. In the Client-Server Model, a client �rst initiates a request
and addressit to the server. Upon receipt of the request from the client, the server carries out
any necessaryactions to ful�ll the request, and then return the results as a responseto the
client. Therefore, typical interactions between a client and server in the Client-Server Model
can be visualized as in Figure 10.1.

Client
Web

Server
(1)

(2)

(3)

(4)

Figure10.1:A simpli�ed HTTP client-serverinteraction

Note that in the Client-Server Model, server and client do not necessarily refer to any physi-
cal devices. In previous chapters, you have learned how to construct modules that represent
objects, or in the procedural approach, representsa set of functions under the same names-
pace. This situation can �t into the Client-Server Model too. The modules can be thought of
asproviding servicesto usersof thesemodules. In this case,the modules act asthe server and
a program that usesthesemodules actsasthe client.

Have you ever thought about what a Web server is? In fact there is nothing mysterious or

10.2 Static Content and Dynamic Content 147

complicated. It is merely a system with a suitable Web server daemon installed. A Web
server daemon is a small program that is executed in the background that handles HTTP re-
quests and responses. A Web browser is actually one of the forms of a user agent. When a
user enters a URI in the browser and hit the “Go” button, the browser, the user agent in this
case,sendsa request to the Web server concerned encapsulating the command of getting the
resource located at the requestedURI. The daemon captures this request, retrieves the speci-
�ed resource if any and returns the content of which to the client asa response.The browser
receivesthe resource. If it is an HTML document, it parsesand renders it so that the document
is eventually displayed in the browser window . Rendering refers to the processof convert-
ing HTML into the graphical objectsdisplayed in the browser window . The previous �gur e
shown actually illustrates the interaction between the client requesting the HTML document
and the server processingthe request. The connections in the �gur e are numbered such that
you can more easily refer to the explanation below to understand what eachmessage�ow is
for.

The interaction between the client and the server is one of the main concernsof this chapter.
The client and the server may run on vastly dif ferent system architectures. For instance, the
Web server may be running on Solariswhile the client on Micr osoft Windows 2000.However ,
a common protocol de�nes the common language of communication between the two parties
so that platform-independent interaction is made possible. On the Internet, a single protocol
is de�ned for the World Wide Web, which is the Hypertext Transfer Protocol , with the more
widely known abbreviation of HTTP. Enactedby the World Wide Web Consortium , or W3C,
HTTP is an open standard that can be freely implemented on any platforms.

Let us brie�y outline how documents can be made accessibleon the World Wide Web. The
administrator of the Web server setsaside a dir ectory (or folder) on the server. All the docu-
ments that are to be made accessibleon the World Wide Web are placed in this dir ectory (and
subdirectories if any). When the URI is received by the Web server, this addressis mapped to
a location in this dir ectory representing the resourceto be retrieved for the client.

(1) representsthe initial HTTP request to the Web server. Before that, the Web browser has
to accomplish several preliminary tasks. This include transformations of the human-oriented
domain name and hostname in the URI to the IP addressnecessaryfor the Internet routing
system to deliver the request to the intended Web server. After the IP addressof the Web
server is identi�ed, the HTTP request is encapsulated in a packet and deliver ed to the Web
server. A packet is the container of the message.The requestis not sentasis. It is put inside the
packet as the payload, and the packet header contains all the necessaryinformation needed
to deliver the packet to the destination. This is analogous to a letter being placed into an
envelope before it is posted. The HTTP request is similar to the letter, and the envelope with
the sender's/r ecipient's addressesis similar to the packet and its header in this analogy.

Having received (1), the Web server will retrieve the document speci�ed. From the �le exten-
sion, the Web server recognizes the resource as an HTML document and, therefore, returns
the content of the HTML document and marks it asof type “text/html”. This is exactly (2).

The client receivesthe packet containing the returned response.Note that a Web server may
return content of types other than HTML. For example, it may be a PDF document or simply
some audio clips. Therefore, a means have to be in place that allows the Web browser to
identify the type of the returned content. That explains why the returned content in (2) have
to be marked of type “text/html”. Upon knowing this is an HTML document, the browser
would parse it and draws the Webpage in accordancewith the HTML received. Recall that an

148 Chapter 10 CGI Programming

HTML document may contain external references(images, audio/video clips, external style
sheetsor Javascript, Javaapplets etc.) that have to be fetched as well in order to display the
Web page properly. In the HTML document shown earlier, the image “logo.gif ” is the only
external referencethat has to be fetched. Therefore, a request for this resource is represented
by (3). The Web server, on receipt of (3), would return the resource and mark it as of type
“image/gif ” (4). Note that if the HTML document hasmultiple external references,additional
connectionshas to be made by the user agent to requestsuch resources.However , usually the
user agent will not fetch such external resourcesone by one. Consider a Web page consisting
of 30 images. It would be too time consuming to request each resource sequentially as the
network can be slow. Usually, the browser will send multiple requestsat a time to the Web
server by opening multiple threads. The Webserver is also likely to be multithr eadedto allow
it to handle multiple incoming requestsconcurrently.

A Web server, in this way, servesonly static content. With the sameURI, anybody would be
accessingexactly the sameresourceat any instance. Also, visitors will not seeany dif ferences
across visits unless the �les have been physically modi�ed. Presentation of static content is
generally adequatefor many Web sites. However , in order for the World Wide Webto become
an interactive media, the ability to serve dynamic content is desired. Dynamic content is
usually achieved by writing scripts, especially server scripts. Thesescripts can generate the
output in real time to clients based on input from the clients and data stored in the server
database.Therefore, it is possible that every visitor to a Website serving dynamic content may
seedif ferent layouts and content customized according to their preferences.That is what that
makes the World Wide Web a powerful and interesting media compared with conventional
media.

10.3 What is CGI?

In general Computer Scienceterms, an interface de�nes a well-de�ned way of interaction
between a system and external entities. Recall that in the object-oriented programming
paradigm, each class exposesitself to the outside through an interface consisting of meth-
ods and properties, and usersof the classesdo not need to (and should not have to) know the
details of the implementation and, instead, accessthe objectsthrough their interfaces.

In Figure 10.1we saw the interaction between the Web server and the client. As the resource
is static (an HTML document on the �lesystem), the Web server can return the speci�ed re-
sourcesif they exist. However , if the resourcespeci�ed is an executablescript, the script will
then need to be executedbefore returning the generated responseto the client.

The Common Gateway Interface (CGI) speci�es the mechanism through which the Web
server should pass data pertaining to the HTTP request to the server script, thus allowing
the server script to capture data from the client.

Compared with other protocol speci�cations, the speci�cation for CGI is intriguingly simple
and short that looks more like a tutorial rather than a speci�cation 1. As you will see, the
principle behind the CGI is very easyto understand. Simply speaking, when the Web server
receivesa request for an executable CGI program, the program is executed. If the program
is an interpr eted one, it needs to invoke an appropriate interpr eter to executeit (which is the

1Someefforts of transforming the CGI speci�cation into a formal speci�cation with well-de�ned grammar is
ongoing. Visit http://cgi-spec.golux.com for details.

http://hoohoo.ncsa.uiuc.edu/cgi
http://cgi-spec.golux.com

10.3 What is CGI? 149

NOTES

Note that not all Web servershave CGI script execution enabled. In fact, the admin-
istrator of the Web server needsto explicitly enable execution of CGI scripts, set up
a CGI script handler and associate�le extensions of CGI scripts permitted (e.g. .pl
and .cgi) with it such that the scripts will be executed instead of being fetched and
displayed in the client's browser window! Execution of CGI scripts posecertain lev-
els of security risks, and are especially dangerous if either the scripts contain a lot of
security vulnerabilities or the Web server is impr operly con�gur ed. Therefore,many
Web hosting companiesdo not allow execution of CGI scripts in freeaccounts.Some
Web hosting companies set up separate �lesystems for hosting CGI scripts to pre-
vent damagesdue to CGI script attacks or malfunctioned CGI scripts from affecting
the entire �lesystem. Later in this chapter I will intr oduce some techniques to write
more secure Perl programs to be deployed asCGI scripts.

perl executable for the purpose of this tutorial). The program writes to the standard output,
and the content of which is then returned to the client.

In order for a CGI script to have accessto certain information that are only known by the Web
server, such asthe remote IP addressof the client and the languagesthe client supports (which
is important to certain siteswhich servecontent with multiple language versions) that areonly
available in HTTP requestheaders,the CGI stipulates the Web server to make available such
information by setting additional environment variables before the Web server executesthe
CGI program. Figure 10.2illustrates this point.

Client
(210.3.88.100)

Port 4014

Web Server
(10.130.6.88)

Port 80

perl
index.pl

GET /index.pl?lang=e HTTP/1.0

REMOTE_ADDR=210.3.88.100
REQUEST_METHOD=GET
QUERY_STRING=lang=e
SCRIPT_NAME=/index.pl

CONTENT_TYPE=text/html

<html> ... </html>

Figure10.2:CGI script execution

The �gur e shows the processof a client requesting the CGI script “index.pl”. The command
displayed is the actual HTTP requestbeing sentby the browser to the Webserver, the syntax of
which complies with the HTTP speci�cation. GETis the action that indicates the method used
to send the request. We usually use GETor POSTto send HTML form data to the Web server.
Following the action is the path to the resource requested. The browser removes the domain
name or IP addressfrom the URI, as it is not used by the Web server to get the speci�ed re-
source. At the end, the HTTP version is speci�ed, and in this diagram, HTTP/1.0. Notice
the string after the question mark in the path. These are passed on the URI, and the Web

150 Chapter 10 CGI Programming

server extracts the text after the question mark (if any) until whitespace is encountered. These
are parameters and are made available by the script by setting the QUERYSTRINGenvironment
variable asindicated in the diagram. The diagram shows several important environment vari-
ables that are usually set and their corresponding values. Note that some other environment
variables are set aswell, but the diagram would be too large to �t in and are thus omitted.

As the script is being executed, it writes to the standard output as the CGI response. Upon
completion of execution, the Web server collects the CGI responseand returns them to the
client, inserting any HTTP responseheaders necessaryat the top to comply with the HTTP
speci�cations. In the diagram, it is assumedthe content returned is an HTML document, and
the type of which is indicated on the �rst line of the response.This would becomepart of the
HTTP return header. HTTP headersare read and recognized by the browser but hidden from
users. The HTTP speci�cation stipulates a blank line between the header and the content.
Therefore, you should put a blank line after the last line of the HTTP header, and no blank
lines should be presentbefore that.

There is a common misconception by many people, especially for those who are not familiar
with the CGI mechanism, to think Perl is CGI, or vice versa, which is highly erroneous. As
I have tried to explain previously, CGI itself is the mechanism that allows executableserver
programs to accessinformation pertaining to the HTTP request through standardized means
such as environment variables, instead of being a programming language. Therefore, it
is a fallacy to use the terms “Perl” and “CGI” interchangeably. In fact, any programming
languages may support the CGI mechanism. CGI programs are not con�ned to interpr eted
languages like Perl or Python etc., compiled languages like C/C++ may also be used to
develop CGI programs that are used on a Web server. Therefore, the term “CGI script” is
not adequately generic, although most CGI programs are written in interpr eted languages,
preferably Perl. Therefore, it is discreet to refer to an executable CGI-enabled Perl script as
a “CGI Perl script”. However , for the purpose of this chapter, I would use the term “CGI
script” to refer to a “CGI Perl script”, for simplicity .

10.4 Your First CGI Program

Having understood all the necessaryconceptsyou need to know for CGI programming, it's
time to get your feet wet by building your �rst CGI script in order for you to understand how
a typical CGI script is constructed.

In this section we are going to build an HTML form that contains a textbox for the visitor to
input his/her name, and a “Submit” button. After the user has pressedthe submit button on
the form, a CGI script will be invoked that prints a phrase of greeting basedon the time of the
server. Therefore,both the form and the script needsto be written.

EXAMPLE 10.1

HTML Form (greeting.html)

<! DOCTYPE HTML PUBLI C " - / /W3C/ /D TD HTML 4. 0 Tr ansi t i onal / /E N"
"h t t p: / / www.w3. or g/ TR/ REC- ht ml 40/ l oose. dt d" >

<ht ml >

10.4 Your First CGI Program 151

<head>
<t i t l e>Gr eet i ngs</t i t l e>

</ head>
<body>

<f or m act i on=" gr eet i ng.p l" met hod="p ost " >
<p st yl e="f ont - wei ght : bol d" >Pl ease ent er your name: </ p>
<i nput t ype="t ext " name="n ame" maxl engt h=" 30" >
<i nput t ype="s ubmi t " val ue="S ubmi t " >

</ f or m>
</ body>

</ ht ml >

Greeting Script (greeting.pl)

1 #! / usr/b i n/ per l - w
2
3
4 use CGI ;
5 use CGI : :C ar p " f at al sToBr owser " ;
6
7 $obj = new CGI ;
8 $par ams = $obj - >Var s;
9

10 $vi si t or = $par ams- >{ ' name' } ;
11 @t i meFi el ds = l ocal t i me t i me;
12 $hour = $t i meFi el ds [2] ;
13
14 pr i nt " Cont ent - Type: t ext / ht ml \n \n " ;
15
16 i f ($hour < 12) {
17 $gr eet i ng = ' Good mor ni ng' ;
18 } el se {
19 $gr eet i ng = ' Good af t er noon' ;
20 }
21
22 i f (!d ef i ned $vi si t or or $vi si t or ! � / \ w/) {
23 $vi si t or = ' vi si t or ' ;
24 }
25
26 pr i nt qq�
27 <! DOCTYPE HTML PUBLI C " - / /W3C/ /D TD HTML 4. 0 Tr ansi t i onal / /E N"
28 "h t t p: / / www.w3. or g/ TR/ REC- ht ml 40/ l oose. dt d" >
29 <ht ml >
30 <head><t i t l e>Gr eet i ngs</t i t l e></h ead>
31 <body>
32 <p>$gr eet i ng, $vi si t or ! </ p>
33 </ body>
34 </ ht ml >
35 � ;

152 Chapter 10 CGI Programming

In order to executethe CGI script, you will need a Web server account that allows execution
of CGI scripts. There are a couple of freeWeb hosts on the Internet that lets you deploy self-
written scripts. I have used and am satis�ed with the service of Spaceports, but you may �nd
better bargains elsewhere. SuchfreeCGI hosts are excellent placesfor you to becomefamiliar
with CGI Perl programming before you are sophisticated enough to set up your own Web
server for development or get more powerful hosting packagewith paid hosts. If you would
like to set up your own Web server for testing, please�ip to Appendix- B for installation and
con�guration instructions.

Upload both �les to your Webserver account. Put the script in the samedir ectory asthe form.
Pleasenote that some Web servers set aside a “cgi-bin” dir ectory inside your account where
CGI scripts are only allowed to be executed inside. For some accounts, CGI scripts may be
placed and executedanywhere in your account. This is subject to the server con�guration and
you should consult the system administrator for details. Anyway , in short, put both �les in
the samedir ectory where CGI script execution is allowed.

Next, you will need to give your �les the correct accesspermissions if your account is on
Unix-variant systems. Changing accesspermissions is commonly known as “chmod”. Most
probably you would be using FTP (File Transfer Protocol) clients to upload your �les to your
Web server account. You will need to use an FTP client that supports chmod, like WS-FTP,
leechFTP, SmartFTP on MS Windows systems. If you are using Linux with X-Windows in-
stalled, most probably you may want to check out gftp or kbear. If you have telnet/SSH ac-
cessto your account or you have dir ect accessto your Web server �lesystem, you may chmod
on the command line too, but I'm not going into details here asthey are very basicskills Unix
usersshould have already beenfamiliar with.

The chmod values to give to each�le and their corresponding verbose representation is:

greeting.html: 644 (rw-r--r--)
greeting.pl: 755 (rwxr-xr-x)

Now you are ready to test your script. Enter the URI of greeting.html in the address�eld of
the Web browser and pressEnter. Pleasecheck with your system administrator or relevant
instructions from the hosting service on the URI to use. The form should be loaded. Enter
your name and click “Submit”, and a messagewill be displayed if there aren't any errors.

Both the HTML form and the CGI script are indeed very simple. Compared with earlier
scripts executedon the command line, several elements are new. First, we have used the CGI
module to fetch the HTML form data in the form of name-value pairs to the CGI script. Next,
on line 12we print a line containing the content type information. The “r eal” server response
in HTML format is between line 24and 33.

The CGI module is the preferred way for a Perl 5 CGI script to handle CGI-related operations.
There are two major operations a CGI script needs to handle in particular . It needs to check
if there are any incoming data being passedto the script. Suchdata are usually passedto the
script as parameters on the URI (the GET method) or as form data (the POSTmethod). The
script is then executed,and results from execution have to bereturned to the client through the
Web server. The HTTP user client (presumably the Web browser) captures the responseand
renders it in the proper way aspreviously mentioned. In this example, incoming parameters
are fetched by the CGI module and returned as a hash reference ($params) by the Vars()
object method. This is usually the most convenient way to get all the incoming parameters in

http://www.spaceports.com

10.4 Your First CGI Program 153

Figure10.3:The“gr eeting”script in action

a single operation. The module actually parsesthe CGI environment variable QUERYSTRING,
which can be obtained by $ENVf 'QUERY STRING' g. Many Perl programmers (and some Perl 5
book authors alike) tend to write their own code of getting HTML form data. An example is
quoted below:

1 i f ($ENV{ 'R EQUEST_METHOD' } eq 'P OST') {
2 r ead(S TDI N, $buf f er , $ENV{ ' CONTENT_LENGTH' }) ;
3 } el se {
4 $buf f er = $ENV{ ' QUERY_STRI NG' } ;
5 }
6
7 @pai r s = spl i t (/ &/ , $buf f er) ;
8
9 f or each $pai r (@pai r s) {

10 ($name, $val ue) = spl i t (/ =/ , $pai r) ;
11 $val ue =� t r/ +/ / ;
12 $val ue =� s/ %([a- fA -F0 - 9] [a- fA -F0 - 9]) /p ack(" C" , hex($1)) / eg;
13 $FORM{ $name} = $val ue;
14 }

The problem is evident. It requires too much typing, and you are actually reinventing the
wheel. BecauseCGI is now a standard module bundled in every Perl distribution, there is
hardly a reasonfor not using it. Also, the codesnippet aboveis not tolerant against malformed
URIs or alternative URI formats. For example, some scripts still use the old convention of
separating key-value pairs by ; instead of &. Unlessyou arevery familiar with suchalternative
formats, many of which arenot well documented in standards or speci�cations, your codewill
fail with such URIs. On the other hand, the CGI module was carefully developed and hasbeen
under constant scrutiny by the Perl community to recognize as many alternative formats as

154 Chapter 10 CGI Programming

possible. As a result, it is more reliable and well-maintained, not to count its easinessof use.
It is instructive to understand how we can get the form data from the environment variables
though becausein this way you would understand more about the CGI speci�cation, yet you
are not recommended to get the form data manually in your production code.

Recall that earlier I mentioned the Web server would include the content type in the return
response. Line 12 is doing exactly that. For static content, the Web server knows the type of
content being returned. However , this doesnot hold for CGI scripts asit is the CGI scripts that
decide on the content to return. Therefore, the script should supply this piece of information
by the Content-Type header �eld. Content-Type is oneof the most frequently useddeclaration
in HTTP headers. HTTP headers have to be print ed before the real content, and an empty
line should exist between the header lines and the content. Web browsers look for the header-
content boundary in this way so that it can hide the headers properly from users. As no
more headersare speci�ed after the content type line in this example, the extra empty line is
produced by two consecutive nn.

A CGI script does not have to generate all necessaryHTTP headers becausethe Web server
should generate them automatically. An exception is Content-Type , for the reason that I
have just explained. Apart from de�ned HTTP headers your scripts may generate other
custom headersyou prefer. However , becauseCGI scripts are usually rendered in browsers,
unrecognized headersare generally ignored, anyway.

10.5 GET vs. POST

In the previous example, we have used a form to transmit user-speci�ed data to the server
CGI script. Note that we have used the GET method to pass the form data, as characterized
by the method property of the form element. However , another method POSTis also available.
Here we shall discusswhat they are and how they dif fer from eachother.

To start with, let's investigate how the form data are transmitted in eachcase.Both methods
involve construction of a query string of the following format:

name1=value1 &name2=valu e2& ...

Recall the HTML form listed in greeting.html. < form > ... < /form > enclosesthe form. Inside
the form, we can �nd a text entry control, whose name attribute is “name”. Each control in
the form should have the name atttribute set. When data is transmitted to the server script, as
theremay be severalpiecesof data sent in the sameform, every pieceof data hasto be labeled
with a name so that the server script can dif ferentiate the values. The name is set as the name
attribute in the corresponding form control. In this example, asthere is only one control, there
is only one name-value pair in the form. Expressedin the above format, that is:

name=Bernard

What if the name or value contains the characters& or =? In fact, non-alphanumeric characters
in the name or the value is encoded, in a manner compatible to RFC2396for a reasonthat is to
be explained shortly. This document documents the format of Uniform Resource Identi�ers,
of which Uniform Resource Locators form a subset. The URI encoding scheme stipulates
all characters except alphanumeric characters and a few unreserved characters (section 2.3)
should be encoded, and this is achieved by representing the character by the hexadecimal
representation of its ASCII value precededby the character “%”. Examples:

10.5 GET vs. POST 155

Bernard%20Chan # Bernard Chan
100%25 # 100%
A%26B%20Associates # A&B Associates

However , as the space character frequently occurs in data to be encoded, there exists an
alternative representation of the spacecharacter by the character “+”. Therefore, if you are
parsing the form data manually yourself (which you are discouraged to do so as explained
earlier) you should ensure “%20” and “+” are both treated as the spacecharacter. This also
explains why it is desirable to use CGI.pm, as to decode properly is not a trivial affair in
itself. By using CGI.pm, you don't even have to care such details — it is handled for you
automatically.

Having examined the encoding mechanism used on form data, it's time to look at how form
data is sent using methods GET and POST.

In the GET method, the query string is appended to the end of the script URI, separated by
the “?” character. The form data is part of the HTTP command. That explains why the URI
encoding schemeis used for the construction of the query string. An example of the exact
HTTP command:

GET /temp/greeting.pl? name=Bern ar d+Chan HTTP/1.1

followed by a series of request HTTP headers. These headers together with the values are
made available to the CGI script by setting environment variables as well. The environment
variable name is the corresponding header �eld name with the pre�x “HTTP ” and all
hyphens replaced by underscores. For example, the server script can retrieve the value of
User-Agent in the HTTP header by querying the environment variable HTTP USER AGENT.

In the CGI speci�cation, it is explicitly mentioned that the value of the QUERYSTRING envi-
ronment variable be set to the query string, that is name=Bernard+Chan in this example and
the CGI application should parse this variable to retrieve the form data. Note that by using
the GET method, beccausethe query string is embedded as part of the URI, it would also be
displayed in the URI in the HTTP response.

On the other hand, by using the POSTmethod the query string is not embedded in the URI.
The exactmechanism is a little bit more complicated. An example of the HTTP command is:

POST /temp/greeting.pl HTTP/1.1

again, followed by a series of HTTP request headers. However , this time we have an addi-
tional line at the end:

Content-Type: application/x-www- for m-urle nc oded

This indicates an HTML form is going to be sent to the server script. The browser then sends
the following line:

Content-Length: 17

This indicates that the forthcoming form data in the form of a query string is of length 17
bytes. The server script can get the content length by querying the environment variable
CONTENTLENGTH. The query string is then sent to the server script. In the CGI mechanism,
the query string is input to the server script via the standard input (STDIN), and the content

156 Chapter 10 CGI Programming

length servesasan indication of the number of bytes to read.

You should now be able to understand fully the code snippet for parsing form data in section
10.4.However , asalways, use the CGI module whenever possible.

So you may ask, should you use GET or POST?My suggestion is to use POST exclusively
for transmission of forms. That is, if you have an HTML form that requires your visitors
to �ll in, use POST. Recall that in the CGI mechanism form data received from GET are
saved in the QUERYSTRING environment variable. It is known that certain shells may pose a
limit to the maximum size of environment variables. Therefore, it is possible that very long
forms are truncated as a result. POSTdoes not have this problem becauseform data, having
received by the Web server is dir ectly piped to the standard input from which CGI applica-
tions can read. GET is also discouraged becauseof security issuesassociatedwith it. Please
readSection10.9for security advice concerning the useof the GET form transmission method.

However , the GET method carries a unique characteristic that makes using it unavoidable
in some situations. In fact, when you click on a hyperlink in an HTML document, you are
actually using the GET method to accessit. Becausethe query string is dir ectly embedded
in the URI, when the URI is accessedby your visitor , the query string is sent to the server
script automatically without the need of creating an HTML form. This property is vital to
CGI applications. Today, some Web sites no longer use static HTML documents to serve
its content, but to generate the pages dynamically using dynamic scripting. Usually, on
these sites there is a single script which is invoked and the page to view is passed to the
script as a query string. The script �nds out which page to display by parsing the query
string, and the corresponding page is generated and returned to the client. For example, a
guestbook CGI application may have one script �le guestbook.pl , and the various functions
are dif ferentiated just by the query string. To read the guestbook you may go through a URI
like guestbook.pl?page= vie w, while to sign it the URI is guestbook.pl?page= sig n. Therefore,
you may reach dif ferent parts of the CGI application simply by varying the query string in
the URI. This function cannot be accomplished with the POSTmethod.

10.6 File Upload

An HTML form is quite powerful in the sensethat it also allows Web-basedupload of �les
to the server. If you have used Webmail (Web-basedemail) services you may already have
the experienceof af�xing attachments when composing an email. This makes use of the �le
upload capabilities of HTML forms. CGI.pm have provided certain facilities for you to write
Perl CGI programs that acceptsuploading of �les from HTML forms.

EXAMPLE 10.2 File Upload

HTML Form (upload.html)

<! DOCTYPE HTML PUBLI C " - / /W3C/ /D TD HTML 4. 01 Tr ansi t i onal / /E N
"h t t p: / / www.w3. or g/ TR/ ht ml 4/ l oose.d t d" " >

<ht ml >
<head>

<t i t l e>Fi l e Upl oad</ t i t l e>

10.6 File Upload 157

NOTES

Note that many Web servers are con�gur ed to disable uploading of �les. This is es-
pecially the casefor free Web hosting services. This is partly becauseto allow �le
upload exposesthe system to certain security risks. FreeWeb hosting servicesusu-
ally have a largenumber of users,and without provisions of remuneration providers
of such Web hosting servicesdo not have adequate incentive and staff to carry out
all necessaryregular security audits and bear the potential costsof intr usions should
security attacksoccur. Pleaseread section 10.9for details on the security issuesasso-
ciated with execution of CGI scripts.

<met a ht t p- equi v=" Cont ent - Type" cont ent ="t ext / ht ml ; char set =i so- 8859- 1" >
</ head>
<body>

<f or m enct ype="mul t i par t /f or m- dat a" met hod="P OST" act i on="u pl oad. pl" >
<p>Pl ease speci f y a f i l e t o upl oad</ p>
<p><i nput t ype=" f i l e" name="f i l ename" si ze=" 60" ></ p>
<i nput t ype="s ubmi t " val ue="Upl oad" >

</ f or m>
</ body>
</ ht ml >

File upload script (upload.pl)

1 #! / usr/b i n/ per l - w
2
3 use CGI ;
4 use CGI : :C ar p " f at al sToBr owser " ;
5
6 $cgi obj = new CGI;
7 $f n = $cgi obj - >par am(' f i l ename'); # f i l ename
8 $f h = $cgi obj - >upl oad('f i l ename'); # f i l ehandl e f or r eadi ng
9 $r I nf o = $cgi obj - >upl oadI nf o($ f n);

10 $byt eCount = 0;
11
12 pr i nt qq� Cont ent - Type: t ext / ht ml \n \n
13 <! DOCTYPE HTML PUBLI C " - / /W3C/ /D TD HTML 4. 01 Tr ansi t i onal / /E N
14 "h t t p: / / www.w3. or g/ TR/ ht ml 4/ l oose.d t d" " >
15 <ht ml >
16 <head>
17 <t i t l e>Upl oad Resul t s</t i t l e>
18 <met a ht t p- equi v="Cont ent - Type" cont ent ="t ext / ht ml ; char set =i so- 8859- 1" >
19 <st yl e t ype="t ext / css" >
20 . Er r or , . Nor mal { f ont - si ze: 1. 5em; f ont - wei ght : bol d}
21 . Er r or { col or : #FF0000; }
22 </ st yl e>
23 </ head>
24 <body>

158 Chapter 10 CGI Programming

25 � ;
26
27 i f (!$ f h && $cgi obj - >cgi _er r or) {
28 # upl oad er r or occur r ed
29 pr i nt qq� <p cl ass="E r r or " >Er r or : Upl oad f ai l ed</ p>� ;
30 } el se {
31 $f n =� / ˆ . * ?([ˆ \ / \ \]+) $/ ;
32 $out name = $1;
33 open OUTFI LE, " >dat a/ $out name" ;
34 bi nmode OUTFI LE; # On some pl at f or ms , ensur e bi nar y f i l e {

out put
35
36 whi l e ($byt es = r ead($f h, $buf f er , 1024)) {
37 $byt eCount += $byt es ;
38 pr i nt OUTFI LE $buf f er ;
39 }
40
41 cl ose OUTFI LE;
42
43 pr i nt qq� \ t\ t <p cl ass="Nor mal " >Upl oad Successf ul . </ p>\n � ;
44 pr i nt " \t\ t< di v>Fi l e si ze: $byt eCount byt es</d i v>\n" ;
45 pr i nt " \t\ t< di v>Fi l e t ype: $r I nf o- >{ ' Cont ent - Type' } </ di v>\n " ;
46 }
47
48 pr i nt qq�
49 </ body>
50 </ ht ml >� ;

10.7 Important Environment Variables

In this section, a few other important environment variables that are useful and are made
available through the CGI mechanism are outlined below.

10.7.1 CGI Environment Variables

REMOTEADDRis set to the IP address of the client sending the HTTP request to the server.
This is usually the addressof the client machine itself. However , presenceof intermediate
proxy servers between the client and the server may result in seeingthe addressof the proxy
server instead of the client machine itself. This is becausethe proxy server, on receipt of
the client HTTP request, replaces the source addresswith its own before sending it to the
server. Proxy servers are set for various purposes, such as caching and imposing security
control. REMOTEHOSTis the fully quali�ed domain name (hostname and domain name) of
the machine identi�ed by REMOTEADDR. As the machine concerned may not have a domain
name, this variable may be NULL. You may also accessit through a CGI object by invoking
the remote host() method.

10.8 Server Side Includes 159

10.8 Server Side Includes

One of the major reasonswhy many people consider PHP more convenient than Perl is that
you can embed PHP code inside parsed HTML documents. On servers that support it, there
exists a feature that is known as Server Side Includes (SSI).SSIrefers to a set of dir ectives
that are placed in an HTML document, and evaluated when the document is parsed by the
Web server. The dir ectives are replaced by the result of evaluation.

The capabilities of Server Side Includes is very limited. Among the several functionalities
supported, the most commonly used feature is to embed the results of a CGI program in an
HTML document. The SSIdir ective used is the include dir ective, which looks like this:

<!--#include virtual="counter.pl " -->

where counter.pl is the CGI program to be executed. Note that only a �le path is supported,
it cannot be a URI. The following shows an HTML page with this SSIdir ective and the source
of the program counter.pl :

EXAMPLE 10.3 Counter s (Server Side Includes)

HTML TestPage(testpage.shtml)

<ht ml >
<head>

<t i t l e>Test Page</t i t l e>
</ head>
<body>

<p>Thi s i s a t est page. </ p>
<hr >
<di v st yl e="f ont - si ze: 0. 8em; f ont - st yl e: i t al i c " >Thi s page has been {

accessed <! - - #i ncl ude vi r t ual ="c ount er . pl" - - > t i mes. </ i ></ di v>
</ body>

</ ht ml >

Counter script (counter.pl)

1 #! / usr/b i n/ per l
2
3 use Fcnt l ' :s eek ' ;
4
5 pr i nt " Cont ent - Type: t ext / ht ml \n \n " ;
6
7 my $pat h = " dat a/ count er . dat" ;
8
9 # Cr eat e i f not yet exi st

10 i f (! - f $pat h) {
11 open LOG, " >$pat h" ;
12 pr i nt LOG " 0" ;

160 Chapter 10 CGI Programming

13 cl ose LOG;
14 }
15
16 # I f cannot be opened, r et ur n a ' ?' f or di spl ay
17 i f (!o pen(LOG, " +<$pat h")) {
18 pr i nt " ?" ;
19 exi t 0;
20 }
21
22 chomp($num = <LOG>);
23 t r uncat e LOG, 0;
24 seek(LOG, 0, SEEK_SET);
25 def i ned($num) or $num = 0;
26 ++$num;
27 pr i nt LOG " $num" ;
28 cl ose LOG;
29 pr i nt $num;

Note that counter.pl is still executedasa CGI program. Therefore, the program still have to
be given an executablechmod and it should output the content type header. Whenever you
load the page testpage.shtml the counter stored in the data �le will be updated and you will
seeat the bottom of the page the number of views of the current page.

Figure10.4:CounterEmbeddedin HTML With SSI

10.9 Security Issues

CGI and Perl together provides a great deal of �exibility and easein developing Web-aware
scripting solutions. However , the issue of security is usually overlooked in the script devel-
opment processeither becausethe developers are not aware of security issuesassociatedwith

10.9 Security Issues 161

server-side scripting, or in order to meet completion deadlines all necessarysecurity audits
are unfortunately bypassed. The consequenceis that a large number of functional scripts but
full of security holes are being pushed into the market every day, and theseprograms are in-
troducing new security backdoors to systemson which they are being deployed. It is easyto
write a program that is functional, yet many security holes are so subtle that they are dif �cult
to be discovered and thus avoided. In this section,we attempt to highlight certain varieties of
attacks possible and compile a set of crude but useful guidelines that would hopefully help
you write more secure CGI scripts.

10.9.1 Why Should I Care?

Perl programs aredistributed in complete sourcecode,making it very easyfor potential crack-
ers to study your source code, locate vulnerabilities and plan for potential exploits. On the
other hand, natively compiled programs can only be examined in assembly language and it is
notoriously dif �cult to tracethe instruction �ow , not to count locating vulnerabilities precisely
from them which is a practically infeasible task. Attacks on compiled programs are usually
either discovered on an adhocmanner or are attacked by, say, passing a very long sequenceof
characters to over�ow the input buffer (many programs written in C or C++ are vulnerable
to this attack). Attacks on interpr eted languages are generally more well crafted and precise
becausethe sourcecode is available to target at speci�c vulnerabilities.

CGI scripts are installed on Web servers and are thus open to visitors anywhere over the
Internet. They are available for attack 24 hours a day, 365 days in a year. For standalone
systemsor systemsin an intranet, attacks are only possible from a limited subsetof users. On
the Internet, attacks may originate from many miles away.

Many CGI scripts are used in business settings or are dir ectly involved in electronic com-
merce, such as shopping cart programs. The ability to maintain a high level of security has
always been paramount in businessapplications. That is becausedata handled by such ap-
plications very likely include highly-con�dential personal data of the clients. Such kinds of
sensitive data include the PIN of clients, their record of transactions and personal information
like addressor social security number etc. Failure to do so not only invites embarrassment
to the �nancial institution(s) concerned, such institutions may also be held legally liable for
impr oper handling of personal data. Occasionalcaseshave beenheard in that the credit card
information of celebrities were being captured by crackers through some illegal means and
subsequently such data were posted to the World Wide Web, putting the subjectsconcerned
in profound embarrassment. People are unlikely to have con�dence in a company being un-
able to keep such data from being impr operly manipulated. This dir ectly leads to loss in
revenue.

10.9.2 Some Forms of Attack Explained

HTML Form Tampering

In 2000, Internet Security Systems, Inc. released a security alert on 11 shop-
ping cart applications that were found to be vulnerable to this attack (please visit
http://www .iss.net/issEn/delivery/xfor ce/alertdetail.jsp?id=advise42 for the full text). This
vulnerability vividly demonstrates the ignorance of the script developers concerned in secu-
rity issuesof CGI programming.

http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise42

162 Chapter 10 CGI Programming

Shopping cart scripts are setup by merchants on Web servers to track down items usershave
selectedto purchase,usually while browsing online product catalogues.When a user browses
the product catalogue and locates an item of interest, he or she clicks on a button or icon
to save the product information, usually the product identi�er and other items necessaryto
identify the user such as the username, to the server database. When he or she has �nished
adding all the items intended to purchase, he or she checks out and the shopping cart is
displayed. A shopping cart is an abstraction of the list of items a user intends to purchase,and
is private to the user concerned,in a sensesimilar to a typical shopping experiencein modern
supermarkets (dropping items into a shopping cart and check out at the cashier). Shopping
cart scripts in general implement this by querying the server databasewith the usernameand
extracts all items to purchasespeci�c to the user. The results are displayed in the form of
an HTML form for the user to con�rm the order and optionally enter additional information
required to processthe order, such asdelivery address,contact phone number, payment card
details etc. (but suchkinds of information aregenerally savedaspart of the user pro�le at user
registration so that such details no longer need to be speci�ed every time he or shepurchases)
An HTML form that is vulnerable to this attack may look like the following:

1 <ht ml >
2 . . .
3 <body>
4 . . .
5 <f or m act i on=" checkout .p l" met hod="p ut " >
6 <i nput t ype="h i dden" name="u ser name" val ue="b er nar dchan" ></ i nput >
7 <i nput t ype="h i dden" name="t ot al " val ue=" 560" ></ i nput >
8
9 <! - - A l i st of i t ems t o pur chase, omi t t ed her e - - >

10
11 <p>Af t er you have conf i r med your or der , cl i ck on t he but t on bel ow. </ {

p>
12 <cent er ><i nput t ype=" submi t " val ue="S ubmi t Or der " ></ i nput ></c ent er >
13 </ f or m>
14 </ body>
15 </ ht ml >

Line 6 and 7 shows two hidden �elds in the HTML form. Unlike the visible form controls,
such asthe text messagesand the submit button, hidden �elds are not rendered in a browser
window . They are typically used to hold additional data which are not bound to any visible
controls but required by the server script (the shopping cart script) to processthe form input.
Notice the name and value attributes of the hidden �elds. The name-value pairs of hidden
�elds are also sent to the server script along with that of other visible controls when the form
is submitted. In this example, the shopping cart script adds the two hidden �elds dynami-
cally in generating the HTML form to hold the username and total amount so that on submit
the shopping cart software would arrange the total amount indicated to be charged on the
customer's credit card account.

And problem comes. Shopping carts with this vulnerability do not verify the ordering
information on submit and blindly assumes the value of the hidden �elds are exactly as
generated by the script itself. Therefore, a user may give himeself or herself a discount by
replacing the total amount with a smaller one. Why is this possible?As the form is generated
and sent to the user, the browser renders it in the browser window . However , a person with
little knowledge will know one can browse the HTML source and even save it as a disk �le.

10.9 Security Issues 163

What he or she needs to do is to use a text editor to modify the value, save it and load the
modi�ed version in the browser. A click on the submit button is all it takes to complete this
attack. Becausethe script does not perform the check on the total, the attack is successful.
This attack may only be discovered one day, possibly in year-end auditing, that the pay-
ment amount and the order do not match, but that would be too late — the subject may
have already closedthe account and hid up that you could no longer �nd him or her anymore.

Why did the script developers commit this error in the �rst place? Possibly the culprit is
“convenience”, or “laziness”. It takes quite many steps to generate the shopping cart HTML
form, and the script developers could make their lives easierby putting all necessarydetails
to processthe order on the form instead of having the checkout script calculate the total
amount again, becausethe calculated total needsto be displayed on the HTML form anyway.
By means of “hidden” �elds they probably thought no one would bother to read the HTML
sourceand discover this security hole. Most people probably would not bother to, but it still
leavesa backdoor for abuse. As an e-commerce application I believe having a backdoor like
this is totally unacceptable,however pretty or sophisticated the application can be.

Conclusion Do not trust anything sent over the network. Always carry out all veri�cations
possible at the bestof your knowledge before committing anything.

Privacy Issues

While this is not dir ectly related to Perl CGI programming in general, you should be aware
that the Hypertext Transfer Protocol (HTTP) that is used for accessingthe World Wide Web
conveysall its messagesin plaintext. Therefore,when you submit a form with your password,
addressor credit card number etc. �lled in these�elds are all transmitted in plaintext through
the Internet. The Internet is a gigantic interconnectednetwork of computers. When you send
a messageto a remote host, for example, to browse a certain Web page on a remote Web
server, the Internet routing system has to �nd a path between you and the remote Web server.
The scaleof the Internet is so large that usually you have to go through many intermediate
hosts on your way to the remote host. Any of these hosts is able to read the content of the
messages,or even to modify it. Under certain circumstances,other malicious hosts may also
beable to eavesdrop the traf�c through thesehosts. Therefore, there is no con�dentiality at all.

If you Web site has to collect privacy-sensitive information from your users by means
of forms, the Web server concerned should be con�gur ed to serve these forms using the
Secure Socket Layer (SSL) protocol or Transport Layer Security (TLS), a close variant of
SSL.The Internet uses a layered architecture. SSLacts between HTTP on top and TCP/IP,
the Internet delivery system at the bottom. Therefore, messagesbetween a Web browser
and the Web server are encrypted in transit and thus malicious hosts, even intermediate
hosts on the path are unable to decrypt the messagesexcept the communicating parties.
For example, when your browser sends a form with your personal information which is
to be sent over SSL,the HTTP messageencapsulating the form data are passed to the SSL
layer which encrypts it and then passto the TCP/IP subsystem to send it to the remote Web
server. The Web server on the remote end reversesthesestepsto receivethe messagefrom the
TCP/IP subsystem,decrypts it and then recover the original HTTP message.Con�guration of
SSL/TLS is performed at the Webserver and no modi�cation to your CGI programs is needed.

164 Chapter 10 CGI Programming

Earlier in this chapter I mentioned the two form submission methods, namely GET and POST.
In the GET method, the form data encoded asa query string are also carried on the URI. This
poses a number of security issues if such form data contain privacy-sensitive information.
First, many browsers now cacherecently visited URIs so that users can easily revisit them
without having to manually bookmark them or otherwise save them. This causespotential
privacy violations on those single-user systems (and thus no password is asked to log on
the system) or miscon�gur ed multi-user systems. For instance, consider a typical patronage
to a cybercafé in your neighbourhood. You logged on a PC inside and conducted an online
transaction to buy something from an online store. Suppose the GET method was used
and thus form data including your password in plaintext were carried on the URI, and was
thus cached by the browser. Then you logged off and left the café. Then another person
logged on the PC, and when he or she started the browser, a URI to the online store with
your password embedded appeared in the browsing history. Does this sound scary to you?
System con�gurations of most public workstations generally should have this issue �xed
already. However , this is not a guarantee. Another situation where this URI may be divulged
is due to a header �eld in HTTP that is called “Referer”. When a user agent, e.g. browser,
sends an HTTP request messageto the remote Web server to retrieve a certain resource,
the user agent may include in the header �eld “Referer” the referring URI, that is, the URI
of the document from which the URI of this resource was obtained. For example, when
you are viewing a Web page on a certain site like http://www.somesit e.c om/ li nks .ht ml
and you click on one of the hyperlinks there to http://www.another sit e. com, for example,
the URI that refers to links.html may be included in the HTTP header which is sent to
anothersite.com . Therefore, if the referrer URI refers to a script URI with privacy-sensitive
information embedded in it they will also be carried along with the next URI access.

You, asa CGI script and Web developer, may do your part to protect your customersby using
the POSTform transmission method instead of the GET method whenever privacy-sensitive
form data are involved becauseform data are not carried in the URI. That does not eliminate
the need for encrypted tunnels such as SSL to keep out of prying eyes over the network,
however.

eval() and Related Attacks

10.9.3 Safe CGI Scripting Guidelines

Refrain from eval() whenever possible. If you do use it, check its content. Ensure the content
is exactly in the form expected.

10.10 Questions

A. We have seenhow a shopping cart application with the form tampering vulnerability
could be abused to give adversariesdiscounts on items paid for. In the make-up HTML
form example shown, identify another attack that may be performed and devise a
mechanism to defend this attack. Assume on submit that the value received through the
“total” �eld is charged on the user's account whose name is “username” immediately
without performing any veri�cations.

Appendix A

Administration

In this appendix, you would learn how to:

? Install a Perl Module from the CPAN

A.1 CPAN

Perl hasa very active user community . This is evinced by the gigantic list of modules available
on the ComprehensivePerl Ar chive Network (CPAN). CPAN is the central warehousewhere
you can search for existing Perl modules other Perl programmers have contributed to the
community . You will be surprised that the CPAN contains modules of virtually any category
you can think of. By using existing modules on the CPAN you can enforce code reuse and
cut down both development time and cost by not reinventingthe wheel. Even if you are not
writing programs in Perl, for example, when you are a system administrator at a web hosting
company offering Perl-enabled hosting packages,you still need to know how to install Perl
modules your usersmay need.

A.1.1 Accessing the Module Database on the Web

You can browse the module list at http://www .cpan.org/modules/01modules.index.html .
However , in my opinion the best way to locate modules is to use the module search engine.
There are several engines available on CPAN, and I generally use http://sear ch.cpan.org
becausethe interface is more neatly, if you know part of the module name already. If you
don't know the name of a module and would like to search through the module description,
then http://kobesear ch.cpan.org would be more useful to you, and it is actually more
powerful. You may download the sourcepackagesand read the documentation online. If you
intend to install the modules in the traditional way (but manually), you may also download
the sourcepackagesthere.

A.1.2 PackageManagers

Perl PackageManager

As most Windows systems are not equipped with a suitable compiler suite (for example,
Micr osoft Visual C++), and somePerl modules contain portions written in C for performance
impr ovements (seebelow), Perl modules are usually distributed in the form of packages. In

165

http://www.cpan.org/modules/01modules.index.html
http://search.cpan.org
http://kobesearch.cpan.org

166 Chapter A Administration

casea module has to be compiled before use, it is compiled before being put into the package.
The packagesare constructed by volunteers who have the compiler to compile the modules,
and the packagesgenerated are then contributed to the community . Therefore, from a user's
point of view this is very convenient asall he or sheneedsto do to install a module is to fetch
the packageand install it, and it's then ready for use.

Activestate Perl (most likely on the Windows platform) distribution comes with a package
manager PPM that I found to be quite convenient to work with. Through this package
manager, packagescan be automatically fetched from a remote server and installed. It also
includes tools to keep your modules up to date.

To start PPM, select “Perl PackageManager” from the “ActiveState ActivePerl 5.8” program
group on the Start menu. You would seea prompt ppm> which gives you a command-line
interface to type your maintenance commands. Don't be frightened by a command-line
interface in caseit looks awkwar d to you (this is a GUI age, after all). It is very easy to use
and you can always accesshelp information by typing help alone. To get help information
on module upgrades, type help upgrade etc.

To start with, you would �rst try to search for modules in the module repository. Try to
type in search Crypt to see a list of cryptographic modules available. By default, PPM
would searches for modules by name only. You can use logical operators and, or and not
in the query string. To match both the module name and description, use the command
search Crypt or ABSTRACT='Crypt' . To install a package, note the package name and use
the command install , for example install Crypt-TripleDES . The latest stable version
of the Crypt::TripleDES module is automatically downloaded and installed. To keep
your modules constantly up to date, type upgrade * -install to upgrade any packages
that areout of date to the latest version. You canbrowse a list of packagesinstalled by query * .

This section is meant to give you an overview of the most commonly performed operations
with PPM. Pleaseread the documentation bundled with ActiveState ActivePerl for further
information. However , becausenot all modules are already packaged for PPM, you may not
be able to use this method for somemodules.

A.1.3 Installing Modules using CPAN.pm

If your Perl distribution does not come with a package manager like PPM, as is the case
for most Unix variants, there is still an easy way to compile and install modules on the
CPAN without resorting to the traditional, but manual method (to be described next). It
is to use the CPAN.pm module that is bundled with your Perl distribution (should be, but
please check it for sure). This module gives you a convenient way to automate the regular
extract-con�gur e-compile-install steps. It does not give you as many features as PPM, but it
is more than adequate if you would just like to install a module in an easy way. However ,
a new module called CPANPLUS.pm is going to replace CPAN.pm in futur e Perl releases,
offering a few more features. You may wish to use it instead of CPAN.pm. However , as of
this writing it is not bundled in perl so you have to install it separately. The instructions
below apply to CPANPLUS aswell, but pleasereplaceCPAN with CPANPLUS.

You can use CPAN.pm in two ways. If you have tried PPM above, you can also have a
shell-like command line interface where you can type the maintenance commands. Alter -
natively, to quickly install a module you may not wish to go into the CPAN.pm shell and

A.1 CPAN 167

you can simply type it on your system command line. Both methods are covered below.
To start the CPAN.pm shell, type perl -MCPAN -e shell on the command prompt. Note
that very likely you need to bethe systemadministrator (root) in order to start the CPAN shell.

cbki hong: � # per l -MCPAN - e shel l

cpan shel l - - CPAN expl or at i on and modul es i nst al l at i on (v1. 76)
ReadLi ne suppor t enabl ed

cpan> h

Di spl ay I nf or mat i on
command ar gument descr i pt i on
a, b, d,m WORD or / REGEXP/ about aut hor s , bundl es , di st r i but i ons , modul es
i WORD or / REGEXP/ about anyt hi ng of above
r NONE r ei nst al l r ecommendat i ons
l s AUTHOR about f i l es i n t he aut hor ' s di r ect or y

Downl oad, Test , Make, I nst al l . . .
get downl oad
make make (i mpl i es get)
t est MODULES, make t est (i mpl i es make)
i nst al l DI STS, BUNDLES make i nst al l (i mpl i es t est)
cl ean make cl ean
l ook open subshel l i n t hese di st s ' di r ect or i es
r eadme di spl ay t hese di st s ' README f i l es

Ot her
h, ? di spl ay t hi s menu ! per l - code eval a per l command
o conf [opt] set and quer y opt i ons q qui t t he cpan shel l
r el oad cpan l oad CPAN. pm agai n r el oad i ndex l oad newer i ndi ces
aut obundl e Snapshot f or ce cmd uncondi t i onal ly do cmd

To install a module, for example, Crypt::DES , you canusethe command install Crypt::DES .
The module would be downloaded from a local package repository, extracted, compiled,
tested and �nally installed on your system. Meanwhile you would see a lot of messages
printed on the screen. Errors, if any, will also be printed. Therefore, if the processsuddenly
stops in the middle and there are some errors printed, you should try your best to locate
the source of the error. Usually, it may be that you have certain prerequisites not met yet.
You should look at the documentation that comes with a module if problems arise to seeif
they are addressedin there. If you don't want to use the CPAN shell, you can specify the
command on the command line, for example, perl -MCPAN -e install Crypt::DES .

Apart from modules, you can install bundles through the CPAN module. A bundle is a
set of related modules that are packaged together. Usually a module requires a set of other
modules, and in this case,the packager may prefer to package all of them as a bundle. An
example of a bundle is Bundle::DBD::mysql , which includes the modules DBI, DBD::mysql ,
Data::ShowTable and MySQL. Eachbundle has a bundle �le which lists the modules covered.
The autobundle command of your CPAN shell lets you create a bundle �le which lists
the modules that are currently installed on your system. For example, if you are a system

168 Chapter A Administration

administrator for a Web host you can maintain a current list of modules on a single system
and have the other systems share the bundle �le to ensure that all servers are installed the
sameversions of Perl modules. For more information, pleaseseethe CPAN manpage.

A.1.4 Installing Modules — The Traditional Way

The traditional way is to download the compressed source package from the CPAN as
mentioned above,and extract it. This method should in general only be used if the CPAN.pm
module isn't or cannot be setup properly. The packagesare compressedwith gzip, a popular
compressing tool on the Unix platform. You can extract the package by the command tar
xvzf package.tar.gz . If your version of tar(1) does not support the `z' switch, you
will need to try zcat package.tar.gz | tar xvf - . On Windows you can decompress
gzipped tarballs with software like Winzip or PowerAr chiver. After the package is extracted,
change to the dir ectory containing the extracted sourceson the command line using the cd
command. Now the Make�le needs to be created. Run the Make�le generation program
by perl Makefile.PL . The program detects the settings of your Perl installation and creates
the site-dependent Make�le (that explains why the Make�le is not included in the sources).
To execute the Make�le, you need a make tool which coordinates the whole compilation
session. On most Unix systemsyou should have a version of make already available. If you
are on Windows, you need to have Visual C++ installed for compilation. nmake is included
in the Visual C++ installation. Becausenmake may not be on your PATH, you may need
to use the Visual Studio command prompt which adds the necessarypaths to the PATH so
that the necessarytools can be invoked without specifying path. On Unix, type make; while
on Windows nmake. The �les would then be compiled. Then type make install or nmake
install to copy the necessary�les to the correct location. Note that modules installed in this
way are not recognized by any packagemanagers.

Although Perl source �les are generally portable, some modules have to make use of the XS
mechanism to delegatepart of the program in C for performance considerations, or when they
need to interface with the system native libraries in order to function. That's why compilation
is sometimes needed. If compilation is needed you need to have a working installation of the
C compiler available. For ActiveState Perl the compiler required is cl.exe of Visual C++, and
gcc on Unix platforms. If you don't have a compiler, you can still install modules which do
not use the XSmechanism (that is, there are no .xs �les in the bundle). On Windows, nmake is
free and you can download from ftp://ftp.micr osoft.com/Softlib/MSLFILES/nmake15.exe
which is a self-extracted executable.

Web Links

A.1 perlmodinstall manpage — Installing CPAN modules
http://www.perldoc.com/perl5.8.0/pod/perlmodinstall.html

ftp://ftp.microsoft.com/Softlib/MSLFILES/nmake15.exe
http://www.perldoc.com/perl5.8.0/pod/perlmodinstall.html

Appendix B

Setting Up A Web Server

You have learned how to develop CGI scripts with Perl. It is not very practical to test CGI
scripts with the Perl interpr eter alone, becauseyou cannot easily reproduce an environment
resembling a real Web server. There are several Perl-enabled freeweb hosting serviceson the
Internet. You may wish to test your scripts there, or on a paid web hosting account that you
own. However , that is still inconvenient having to upload and test every time you would like
to test your scripts. Also, using a thir d party server for script testing is dangerous. First, if
your script goesastray and locks itself in an in�nite loop (this is far more easierto occur than
you think), it would become a never-ending processthat sits there wasting CPU time and
system resources. Every invocation of the script concerned increasesone faulty process. It
doesnot require many clicks before the server would eventually be brought down. Although
you may start to wonder your script has gone into an in�nite loop, you cannot do anything
becausethe processesare executed as a system user (on a Unix system, quite likely it's a
pseudo user “nobody”) instead of you and, even if you have shell accessto the Web server,
you don't have the privilege to terminate thesefaulty processes.Helplessly, a few hours you
receive a furious letter from the Web host administrator about locking up your account or
so. It's not a story. This was a pathetic experience of mine in my early years of Perl script
development. Also, don't forget freeweb hosts usually don't give you accessto error logs, so
you would get no clue why your scripts do not function as expected. A testing Web server
comesto rescue.In fact, you cansetup an entirely freeWebserver in lessthan half an hour. In
this appendix, I would give you some instructions that guide you through setting up a basic
Perl-enabled Web server that you can use to test your CGI scripts of�ine. The instructions
were testedon my system,namely Windows 2000Professionaland Debian Linux 3.0(woody).

B.1 Apache

You can download the latest version of Apache Web server from Apache. For your conve-
nience, the link to the latest version asof this writing is provided below:

Apache 2.0.47(Windows binary)
Apache 2.0.47(Unix source)

B.1.1 Microsoft Windows

Note that the installation �le uses the Micr osoft Installer for installation. If your Windows
version is ME or 2000,you are ready to executethe installation program. If you useWindows

169

http://httpd.apache.org
http://www.apache.org/dist/httpd/binaries/win32/apache_2.0.47-win32-x86-no_ssl.msi
http://www.apache.org/dist/httpd/httpd-2.0.47.tar.gz

170 Chapter B Setting Up A Web Server

XP, you need to install Windows XP ServicePack 1 �rst if you haven't installed it yet. If you
have older versions of Windows, you may need to install MSI Installer. Double click on the
.msi �le just downloaded. If that doesn't work, you don't have MSI installer set up yet and
need to install it �rst. Pleasesearch the Micr osoft Web site for the download link.

You should be logged in asa user whose privilege allows installation of software,say admin-
istrator. The installation program should start. You should disable any �r ewall software on
your system before proceeding with the installation. Also, if you have any other Web servers
running which binds to port 80 you should disable them �rst. On Windows 2000,go to the
Serviceswindow . Right click over the entry “World Wide Web Publishing Service” and select
“Stop”.

After you have agreed to the terms of the license agreement and press “next”, specify the
network domain, server name and administrator 's email address. If a domain name is
available on your network, enter it into “network domain”. Otherwise, put localhost for
both “network domain” and “server name” like I do. You can change thesesettings later on
in the Apache con�guration �le manually, so the settings that I specify in the screenshot is
generally adequate.

FigureB.1: ApacheInstallationOptions

Then select installation type. Choose“Typical” here which is generally suf�cient, unless you
would like to compile modules on your own later on (quite rare on a Windows system).
Then choose the installation folder. The default value is usually acceptable. Installation
then begins. When installation is completed successfully, Apache should have already been
started asa service.

B.1 Apache 171

Test your Web server by accessinghttp://localhost. You should seethe default Apache test
�le, as shown (the language of the page may dif fer, but you should seea similar page with
the Apache logo).

FigureB.2: ApacheDefault IndexFile

Now you canedit the con�guration �le. Go to the Start Menu >> Apache HTTP Server2.0.47
>> Con�gur e Apache Server >> Edit the Apache httpd.conf Con�guration �le. Notepad
appearscontaining the con�guration �le.

If you would like to run IIS and Apache concurrently, search for the two lines like

Li st en 80
Ser ver Name l ocal host : 80

They are at dif ferent locations in the �le and I just put them here together for convenience.
Change the two lines to

Li st en 8000
Ser ver Name l ocal host : 8000

which instructs Apache to bind to port 8000instead of port 80. IIS still gets port 80. If you
don't need (or don't have) IIS, you don't need this step.

Now we add in support for CGI. Find the line

#AddHandl er cgi - scr i pt . cgi

172 Chapter B Setting Up A Web Server

and changeit to

AddHandl er cgi- scr i pt . cgi . pl

That is, remove the # at the front and add “.pl” at the end. This makes Apache recognize this
�le extension asCGI scripts.

Now enable CGI scripts to executein a speci�c dir ectory you prefer. On Windows NT-series
(including 2000and XP) operating systems you are recommended to put your scripts under
your own “My Documents” folder for easyaccess.Very likely you already have a “My Webs”
folder in it that has already been created for you by your Windows installation that you can
use. Find out a section like

User Di r " My Document s /My Websi t e"

#<Di r ect or y "C: /D ocument s and Set t i ngs / * /My Document s / My Websi t e" >
Al l owOver r i de Fi l eI nf o Aut hConf i g Li mi t
Opt i ons Mul t i Vi ews I ndexes SymLi nksI f Owner Matc h I ncl udesNoExec
<Li mi t GET POST OPTI ONS PROPFI ND>
Or der al l ow, deny
Al l ow f r om al l
</ Li mi t >
<Li mi t Except GET POST OPTI ONS PROPFI ND>
Or der deny,a l l ow
Deny f r om al l
</ Li mi t Except >
#</ Di r ect or y>

Remove the # asshown below and correct the path (for example the drive label on my system
is F: instead of C:, and the folder containing the scripts and HTML �les is changed from the
default “My Website” to “My Webs”). Change the “Options” line as shown below, and add
the ScriptInterpr eterSourcedir ective, which instructs Apache to �nd the path to Perl from the
Windows Registry instead of from the shebangline:

User Di r " My Document s /My Webs"

<Di r ect or y " F: /D ocument s and Set t i ngs / * / My Document s /My Webs" >
Al l owOver r i de Fi l eI nf o Aut hConf i g Li mi t
Opt i ons Mul t i Vi ews I ndexes SymLi nksI f OwnerMat ch I ncl udes ExecCGI
<Li mi t GET POST OPTI ONS PROPFI ND>

Or der al l ow,d eny
Al l ow f r om al l

</ Li mi t >
<Li mi t Except GET POST OPTI ONS PROPFI ND>

Or der deny, al l ow
Deny f r om al l

</ Li mi t Except >
</ Di r ect or y >

Scr i pt I nt er pre te rS ourc e Regi st r y - st r i ct

B.1 Apache 173

We would like to use the Registry to resolve the Perl installation path becausemost Perl
scripts (especially thir d-party scripts) today simply use the Unix-style #!/usr/bin/perl
shebangline and in order to use thesescripts you will need to correct all the shebanglines to
the correct Perl path, which is not convenient. If the Perl path is resolved from the Registry,
then the path on the shebang is ignored. This is generally recommended unless you are
not con�dent with editing the Registry yourself. If you don't feel comfortable editing the
Registry, then comment out (put a # in front of) the ScriptInterpr eterSourceline above. Then,
you will need to edit the shebang line of all your scripts to re�ect the path to your Perl
interpr eter, e.g.

#! F: /P er l / bi n/ per l . exe

or, if your interpr eter is on the PATH, you can use instead

#!p er l

Now savethe Apache con�guration �le and restart the Web server by Start Menu >> Apache
HTTP Server 2.0.47>> Control Apache Server>> Restart.

At last, you will need to edit the Windows Registry. This is dangerous if you did it impr operly
asproper functioning of your Windows system relies on the integrity of the Registry. Always
stop and think before you commit your action becauseRegistry operations are irr eversible!
To run the Registry Editor, selectStart Menu >> Run and in the box type regedit.exe , and
pressEnter.

Data entries in the Windows Registry are arranged in a tree, rather like a dir ectory structure
of a �lesystem. The left pane contains a treecontaining a hierarchy of keys. When you click
on a key in the left pane, the right pane contains a list of values associatedwith that key.

In the left pane, under “My Computer ” you would �nd a number of nodes (keys). In
earlier versions of Windows you would not �nd a “My Computer ” root node, but that
does not matter. Now expand the “HKEY CLASSESROOT” node and �nd the “.pl” node
below. If Activestate Perl is installed, the key should be there. Then right click on the “.pl”
node and choose “New” >> “Key”. A new key is created under “.pl”. Type “Shell” for
the name. Similarly , create “ExecCGI” under “Shell”, and “Command” under “ExecCGI”.
Click on “Command”, and in the right pane double click on the text “(Default)” and enter
”F:nPerlnbinnperl.exe” ”%1”, don't forget to update the path to the Perl executable if this is
not correct, and click OK.

When �nished, the Registry Editor should look like Figure B.3, with all the nodes expanded.

You can now closethe Registry Editor. Createa simple Perl CGI script:

1 #! / usr/b i n/ per l
2
3 # You shoul d updat e t he shebang l i ne above i f you don' t have
4 # t he necessar y Regi st r y ent r y or have not added t he l i ne
5 # Scr i pt I nt er pre te rS ourc e Regi st r y - Scr i pt t o ht t pd.c onf
6
7 pr i nt " Cont ent - Type: t ext / ht ml \n \n " ;
8

174 Chapter B Setting Up A Web Server

FigureB.3:RegistryAfter Modi�cation

9 pr i nt " <ht ml >
10 <head><t i t l e>Test scr i pt </t i t l e></h ead>
11 <body>
12 <h1>Hel l o Wor l d</h1 >
13 </ body>
14 </ ht ml >" ;

Recall Apache have beencon�gur ed to allow execution of Perl CGI scripts in the “My Webs”
folder in your “My Documents” folder. Save your �le there with a “.pl” extension, for
example on my system it's F:nDocuments and SettingsnAdministrator nMy DocumentsnMy
Websntest.pl.

Now, accesshttp://localhost/ � administrator/test.pl. Replace “administrator ” with the
username. If you have adhered to this tutorial, it would be “administrator ”. If you have
changed the Apache port number to 8000 replace “localhost” with “localhost:8000” in the
URL. You should seethe “Hello World” text in the browser window . Congratulations! Your
Web server hasbeenset up!

If you have disabled IIS temporarily and changed the Apache port number to anything other
than 80,you can now restart IIS if you would like to.

B.1.2 Unix

By far the only uniform way to install Apache on nearly all Unix platforms is to install
a source distribution. Binaries for dif ferent Unix variants are not interoperable, and are
installed in a dif ferent manner. For example, if you are on mainstream Linux distributions
you may be able to �nd RPMs (RPM Package Manager) compiled for your distribution.
Debian Linux also has its own packagemanager. FreeBSDalso has a port system. Therefore,
you should possibly check the documentation on your system to seeif binaries are available.
However , binaries are usually slightly out of date becauseyou need to wait until packagers
package a software into binaries suitable for your platform. Installation instructions for
binary packagesare not described here.

B.1 Apache 175

You can extract the package by the command tar xvzf httpd-2.0.47.tar. gz . If your
version of tar(1) does not support `z' switch, you will need to try zcat httpd-2.0.47.tar.gz
| tar xvf - . After the package is extracted, changeto the dir ectory containing the extracted
sources on the command line using the cd command. First, we set up the con�guration
options of Apache by the configure shell script. Use this command:

. /c onf i gur e - -e nabl e- mods- shar ed=al l - - pr ef i x=/u sr/l ocal

which installs Apache using the installation pre�x /usr/local. All modules are enabled and
compiled as shared libraries, instead of linking them into the main Apache executable. In
this way, we only dynamically load a module when it is needed. The CGI module is one of
the modules that would be compiled. You may specify additional options if you like. Type
./configure --help for a list of con�guration options that can be applied. If you don't see
any errors at the end of the messages,then you should be �ne. Now compile and install it.

make
make i nst al l

If no error messagesappear which causes the compilation to stop, then you are lucky.
Now Apache should be installed. Here I outline the changes to be made to the Apache
con�guration �le. If you adhere to this tutorial the con�guration �le should be at /usr/lo-
cal/etc/httpd.conf. Becausethis is similar to that of in the previous section I'm not going to
explain the options that have beencovered there. This is the original con�guration:

User nobody
Gr oup #- 1

Ser ver Admi n you@your . addr ess
#Ser ver Name new. host . name: 80

#<Di r ect or y / home/ * /p ubl i c_ht ml >
Al l owOver r i de Fi l eI nf o Aut hConf i g Li mi t I ndexes
Opt i ons Mul t i Vi ews I ndexes SymLi nksI f Owner Matc h I ncl udesNoExec
<Li mi t GET POST OPTI ONS PROPFI ND>
Or der al l ow, deny
Al l ow f r om al l
</ Li mi t >
<Li mi t Except GET POST OPTI ONS PROPFI ND>
Or der deny,a l l ow
Deny f r om al l
</ Li mi t Except >
#</ Di r ect or y>

#AddHandl er cgi - scr i pt . cgi

My modi�cations are as follows (please read the description below before making your
changes):

User www
Gr oup www

176 Chapter B Setting Up A Web Server

Ser ver Admi n abc@def .c om
Ser ver Name 127. 0. 0. 1: 80

<Di r ect or y / home/ * /p ubl i c_ht ml >
Al l owOver r i de Fi l eI nf o Aut hConf i g Li mi t I ndexes
Opt i ons Mul t i Vi ews I ndexes SymLi nksI f OwnerMat ch I ncl udes ExecCGI
<Li mi t GET POST OPTI ONS PROPFI ND>

Or der al l ow,d eny
Al l ow f r om al l

</ Li mi t >
<Li mi t Except GET POST OPTI ONS PROPFI ND>

Or der deny, al l ow
Deny f r om al l

</ Li mi t Except >
</ Di r ect or y >

AddHandl er cgi- scr i pt . cgi . pl

On Unix, although Apache has to be executed as root in order to bind to port 80 (as a side
note: you can also install Apache in a user account by modifying the installation pre�x
--prefix during con�guration to somewhere inside your home dir ectory but you need to
set the port number to be larger than 1024becauseport numbers below 1024are so called
privileged ports that by Unix convention can only be bound to by the root user), in most
installations onceApache hasstarted up it would drop its root privilege through the chroot()
system call and run as a pseudo user like “www” or “nobody” that has limited privileges
to do much harm to the system should intr usions occur. This is a measure to minimize the
security risks involved. An appropriate user and group may have been created for you by
your operating system installation already. If not, you will need to create them. Seethe
adduser(8) and addgroup(8) manpagesfor more information. On my system, a “www” user
and group has beencreated and I just use it here.

You should specify the email addressof the administrator . In Windows this information is
already set up by the installation program, but on Unix you will need to set it here. Similarly
is the casefor ServerName.

With this con�guration, you should be able to execute CGI scripts inside the “public html”
dir ectory. Now start the Apache Web server by

/ usr / l ocal / bi n/ apachect l st ar t

Appendix C

A Unix Primer

In this appendix, you would learn:

? basicconceptsof the Unix operating system

? somebasiccommands in Unix

C.1 Introduction

C.1.1 Why Should I Care About Unix?

You may wonder why I took the time to dedicate an appendix to the Unix operating system
in a Perl tutorial. “Perl is platform-independent”, you said, “and my Perl programs run �ne
on my Windows XP!” Indeed, Perl programs are largely platform independent (platform-
dependent Perl programming is possible, but in most casesyou don't need to, so I am not
going into details), and you can develop and test Perl programs entirely on your platform.
However , a couple of Web server surveys consistently con�rm that more than 60%of the Web
servers on the Internet run on various �avours of Unix, outweighing Micr osoft Windows
with the remaining share of about 30%. Very likely , your Web host is also running on Unix.
Therefore, it is bene�cial to you if you can get yourself acquainted with this operating system.

Also, Perl has a strong Unix cultur e and tradition. It was intended to be a �exible scripting
language like shell scripting, awk and sed etc. on Unix platforms. For example, regular
expressionshave long been extensively used in various utilities on the Unix platform. Quite
a number of Perl's builtin functions (as seenon the perlfunc manpage) are interfaces to the
corresponding Unix commands or closely resemble functions in the standard C libraries
on Unix (not to mention the fact that Dennis Ritchie, the inventor of the C programming
language, was also one of the inventors of the core Unix operating system!).

C.1.2 What Is Unix?

Unlike Micr osoft Windows, which is solely owned and developed by the Micr osoft Corpora-
tion, the term “Unix” doesnot refer to any speci�c operating system releases.It is a collective
name embracing a family of operating systems sharing certain common characteristics.1 It
was initially developed by Dennis Ritchie and Ken Thompson from the Bell Labs in 1960s.

1The Open Group has issued The Open Group BaseSpeci�cations Issue6, IEEE Std 1003.1,2003Edition that
de�nes a standard operating system interface, which can be regarded as the basisof Unix operating systems.

177

http://www.opengroup.org/onlinepubs/007904975/

178 Chapter C A Unix Primer

Over more than 30 years of evolution, many variants of the Unix operating systems have
emerged. Today, the most prominent names in Unix include Linux, *BSD(FreeBSD/OpenBS-
D/NetBSD), Solaris and Mac OSX (Jaguar)asa newcomer.

This appendix is intended to be an intr oduction to the Unix computing environment. There-
fore, emphasis is placed on shell commands that are frequently used by users. In particular ,
X-Windows, the graphical user interface on Unix, will not be intr oduced in this chapter.
Also, for the sake of generality features or commands that are speci�c to any particular
Unix variant will not be included. The commands and concepts described in this chapter
can be applied on many Unix operating systems. Readersare advised to consult other Unix
literatur e for more in-depth treatment of the topics covered.

C.1.3 The Overall Structure

A system running Unix can generally be envisioned as having a layered architecture.
What does this mean? First, the bottom layer is the system hardwar e. This ranges from
the central processing unit (CPU), memory system, storage devices, graphics adapter to
peripheral devices such as keyboard and printers. They are interconnected through buses,
that are inter-component wir es that carry data and control information in between. The
operating system lies on top of the hardwar e layer to coordinate the hardwar e components.
This part of the operating system which interacts with the hardwar e dir ectly is the core
of the operating system, called the kernel . On top of the kernel are the user programs.
Theseprograms do not need to interact with the hardwar e dir ectly anymore. Instead, they
only need to interface with the kernel in case those services are needed, by invoking the
necessarysystem calls, which are functions provided by the kernel. Filesystem operations,
for example, are examples of standard system calls on Unix. The kernel would in turn
perform the appropriate actions to instruct the devices to commit the operation. When
you are using a user program, you are presumably the top among the layers, on top of
the user program. The user program provides you with the user interface with which you
interact. Commands de�ned by the user program, and in caseof graphical user interfaces,
mouse clicks and their corresponding pixel coordinates are translated into instructions for
the lower layers. This layered architecture allows a high degree of abstraction between
layers. If the interface (or the Application Programming Interface) of a layer changes,
only the layer immediately on top needs to be modi�ed. Becauseof abstraction, the user
needs not understand the low-level details of the hardwar e circuitry , for example, in order
to operate a computer system. This is an important principle in all modern computer systems.

To sum up, the Unix operating system serves to act as an intermediary between a computer
user and the computer hardwar e so that activities that occur at dif ferent components of a
computer system are well coordinated.

Unlike many other operating systems, Unix is a multi-user operating system from the very
beginning, allowing multiple users to work on the system concurrently.

C.2 Filesystems and Processes 179

C.2 Filesystems and Processes

C.2.1 Overview

In modern days, large-capacity secondary storage is important. Floppy disks, hard disks
and CD-ROM etc. are classi�ed assecondary storage devices, in contrast to primary storage,
which is just an alias of the main memory. Secondarystoragemedia is considered permanent,
becausedata that are written onto the media are retained when the power is off. When an
executable �le has to be executed, the operating system arranges for the executable �le to
be copied from secondary storage to primary storage (i.e. your RAM). The program is then
broken down into instructions and executed from internal caches. A program in execution
is called a process. The reason that the executable �le is not executed from the secondary
storage dir ectly is that accessesof secondary storage devices are very slow compared with
the main memory becausesuch accessesinvolve mechanical movement of disk arms, for
example, and the speedof which is subject to mechanical limitations.

A disk is simply a large array of disk blocks of �xed size in which data can be stored. It does
not mandate any rules to organize data that are being stored on the disk. In order to better
organize storage of data, a large-capacity storage media is usually divided into multiple
partitions . This is very common in systems with multiple operating systems installed, with
each operating system installed in its own partition. However , partitioning simply marks
the beginning and the end of each partition, but does not answer the need for organizing
data that are written in each partition. Therefore, the second step is to create a �lesystem
on each partition. By creating a �lesystem, the data structures that are necessaryto index
data to allow ef�cient accessare written to the partition. This operation is more well-known
as “formatting” to users of MS-DOS and Windows operating systems. Modern Windows
systems use either one of the two �lesystems, namely File Allocation Table (FAT) or New
Technology File System (NTFS). On Unix, various choices of �lesystems are available
depending on the operating system variant. Among the Unix variants, Linux supports the
largest number of �lesystems. The standard �lesystem on Linux is the Second Extended
Filesystem (ext2). Other �lesystems in widespr ead use include reiserfs and ext3, which are
both equipped with journalling capabilities. Other Unix variants mostly use the Unix File
System (UFS).

The �lesystem determines the dir ectory structure, for example, how �les are representedand
layout on the disk. To better organize the �les, we intr oduce a hierarchical dir ectory structure.
Logically, �les are classi�ed and put into dif ferent dir ectories. Files of a similar kind are put
into the same dir ectory. Also, dir ectories can be nested, so that a dir ectory can be created
inside a dir ectory. This allows �ne-grained organization of �les in a well-str uctured manner
for easyaccess.Becausedir ectories are hierarchical, they are customarily representedin the
form of a tree. In Computer Sciencearena, a treerefers to a hierarchical data structure which
best shows the subordinate relationships of dir ectories. This is a very intuitive concept that
readerswith someexperiencewith operating systemsshould be familiar with.

The root of the dir ectory structure in Unix is represented by /. The dir ectory root is the
only dir ectory which does not have any parents. All �les on the system must rest under the
dir ectory root. As you can see in the �gur e above, a number of dir ectories appear under
the root. Each of these dir ectories serve its speci�c purposes. In Table C.1 I list a few more
important onesthat are presenton nearly all Unix systems 2.

2Pleaseconsult the Filesystem Hierar chy Standard, the recommended schemefor compatibility between dif-
ferent Unix variants.

http://www.pathname.com/fhs/

180 Chapter C A Unix Primer

FigureC.1: Dir ectoryStructureIn TreeRepresentation

Directory Purpose
/bin Essentialuser programs, e.g. shells, �le tools
/boot Core system �les for system bootup
/dev Device �les (remember devices are representedas �les?)
/etc System-wide con�guration �les for system and user programs
/home User accounts: �les private to individual users
/mnt Mount point for foreign �lesystems
/root User account of system administrator (root)
/sbin Systemadministration commands used only by root
/tmp Temporary �les
/usr User programs that are installed system-wide, and related �les
/var Data �les written by system programs, e.g. email and various logs

TableC.1: Major Unix StandardDir ectoriesandTheir Purposes

In Unix terminology , a �le is not necessarily a regular �le. Dir ectories, symbolic links and
even devices are also representedin the sameway asa regular �le, dif ferentiated simply by a
�le type indicator in the inode (seebelow). Customarily , regular �les are representedby a hy-
phen “-”, dir ectoriesby “d” and symbolic links by “l”. A few other �le types are de�ned, yet
they are specialized �le types that are seldom used dir ectly, so I am not going into details here.

C.2.2 Symbolic Links and Hard Links

The concept of links is foreign to users of many other operating systems, e.g. MS-DOS or
Windows. Unix supports two types of links, namely symbolic links and hard links . Symbolic

C.2 Filesystems and Processes 181

links and hard links in Unix are similar in senseto symbolic referencesand referencesin Perl,
respectively. In many situations, symbolic links and hard links have similar effects. However ,
under the hood they are implemented in very dif ferent ways which give rise to dif ferent
behaviours in certain situations. Becausethe concept of hard links is not very clearly ex-
plained in many Unix literatur e, I decided to elaboratea little bit on this concept in this section.

Symbolic links are easierto understand. It works like “shortcuts” (the .lnk) �les on Windows.
Basically, a symbolic link is a special type of �le that storesan alternative accesspath. When
the symbolic link is accessed,the stored path is used for access.Symbolic links are frequently
used to create shortcuts to very long paths, such that a shorter path is used instead. For
software distribution sites, they are also used to maintain a static URL to the latest release.
For example, on a certain system there are dir ectoriesand �les asfollows:

/
pub/

download/
myprog_current.zi p -> /usr/share/devel/ myprog /cu rr ent .zi p

usr/
share/

devel/
myprog/

current.zip -> myprog_3.0.zip
myprog_1.0.zip
myprog_2.0.zip
myprog_2.2.zip
myprog_3.0.zip

The “ -> ” indicates a symbolic link. On the left is the name of the symbolic link (the alias), and
on the right is the alternative path to follow . Saymyprog is a softwaredeveloped. In this exam-
ple, to accessthe current version of myprog , the path is /pub/download/mypro g current.zip .
When the �le is accessedthrough this symbolic link, the system would then try to ac-
cess it at /usr/share/devel/m yp rog /cu rre nt .zi p, which in turn is also a symbolic link
to myprog 3.0.zip , the archive of the latest release. Therefore, essentially, the path
/usr/share/devel/m ypr og/my pro g 3.0.zip is used to accessthe �le. This example serves
both purposes. It shortens the URL, and userscan always get the latest releasewith the same
URL, provided the symbolic links are properly maintained to point to the latest release.You
may also wonder why I create two symbolic links instead of having myprog current.zip
pointing to myprog 3.0.zip dir ectly. This is for conveniencein management,so that no matter
the user is in /pub/download or /usr/share/devel/m ypr og he or shecan still easily locate the
latest version, and notice that by doing so the symbolic link in /pub/download needs not be
updated when a new releaseis placed in /usr/share/devel/m ypr og, only current.zip needs
to be.

To createa symbolic link, use the ln command, with the -s switch. For example,

cbki hong@cbkih ong: � /t est $ cd pub/ downl oad
cbki hong@cbkih ong: /p ub/ downl oad$ l n -s / usr/ shar e/ devel / mypr og/ cur r ent . zi p {

mypr og_cur r ent . zi p

Hard links are more dif �cult to understand. Recall that in the previous section I described

182 Chapter C A Unix Primer

what a �lesystem is. By creating a �lesystem, indexing facilities that allow the operating
system to quickly locate which disk blocks a certain �le occupiesare created on the disk. This
servesa similar purpose asthe map in a traveller 's pocket. When a �le is created on the disk,
an inode (index node) is created for the �le which contains attributes such as the owner and
group (seenext section) identi�ers, the times of modi�cation and access,the �le type and
locations of disk blocks containing the �le content (pointers). Finally, the operating system
needs to add to the inode of the containing dir ectory the pointer to the newly created inode
so that the �le is added to the dir ectory entry. This pointer is actually a hard link. Hard links
work at the level of inodes to allow dir ect accessof the �le being pointed to. Therefore, for
every inode there is at least one hard link that points to it, from the containing dir ectory �le
entry. If we createan additional hard link to a �le, that meansa new pointer to the �le inode
is added. Here is a sequenceof commands which servesasan example:

cbki hong@cbkih ong: � /t est $ t ouch f i l e1. t xt
cbki hong@cbkih ong: � /t est $ l n f i l e1. t xt f i l e2. t xt
cbki hong@cbkih ong: � /t est $ t ouch f i l e3. t xt
cbki hong@cbkih ong: � /t est $ l s - l i

342533 - rw- r- -r - - 2 cbki hong cbki hong 0 2003- 07- 30 17: 56 f i l e1. t xt
342533 - rw- r- -r - - 2 cbki hong cbki hong 0 2003- 07- 30 17: 56 f i l e2. t xt
342531 - rw- r- -r - - 1 cbki hong cbki hong 0 2003- 07- 30 17: 59 f i l e3. t xt

cbki hong@cbkih ong: � /t est $ echo " ABCD" > f i l e1. t xt
cbki hong@cbkih ong: � /t est $ l s - l i

342533 - rw- r- -r - - 2 cbki hong cbki hong 5 2003- 07- 30 18: 01 f i l e1. t xt
342533 - rw- r- -r - - 2 cbki hong cbki hong 5 2003- 07- 30 18: 01 f i l e2. t xt
342531 - rw- r- -r - - 1 cbki hong cbki hong 0 2003- 07- 30 17: 59 f i l e3. t xt

The touch command createsan empty �le. The ln command without any switches createsa
hard link. Here, file2.txt is created as an additional hard link to the inode of file1.txt .
The ls command displays a listing of �les. Here, two switches -l and -i are given. If multiple
switches are provided on the command line, you can combine them into -li (ordering does
not matter). The -l option causesthe long listing to be displayed, with the permission values,
owner, group, date of the last modi�cation and the �le size. If the -i switch is given, the inode
number that the �le entry points to is inserted as the �rst column. We can seethat file1.txt
and file2.txt points to the same inode, while file3.txt points to a dif ferent inode. The
thir d column is the number of hard links pointing to the inode. This number is stored at
each inode. For regular �les, this number is usually one, as explained previously. However ,
becausewe have manually created a new hard link as file2.txt , the number displayed is 2.
Also notice that the two entries are exactly identical, except the name. Here, the text “ABCD”
(with line terminating character) is written into file1.txt , and both entries are updated.

You may wonder why the �lesystem has to keep track of the number of hard links pointing to
an inode. If you have read the chapter on referencesin Perl you will �nd a closeresemblance
with the Perl garbage collection mechanism. That is, the inode would not be freed (deleted)
until the number of hard links to it drops to 0. Consider the example again. If at this point we
delete file1.txt , the number drops to 1, but becausewe still have a hard link that points to
it from the entry file2.txt , the inode is not freed. It is not until when file2.txt is deleted,
that the inode and other disk blocks that are associatedwith this �le will eventually be freed.

cbki hong@cbkih ong: � /t est $ r m f i l e1. t xt
cbki hong@cbkih ong: � /t est $ l s - l i

C.2 Filesystems and Processes 183

342533 - rw- r- -r - - 1 cbki hong cbki hong 5 2003- 07- 30 18: 01 f i l e2. t xt
342531 - rw- r- -r - - 1 cbki hong cbki hong 0 2003- 07- 30 17: 59 f i l e3. t xt

cbki hong@cbkih ong: � /t est $ r m f i l e2. t xt
cbki hong@cbkih ong: � /t est $ l s - l i

342531 - rw- r- -r - - 1 cbki hong cbki hong 0 2003- 07- 30 17: 59 f i l e3. t xt

Occasionally you will �nd some�les (and dir ectories)with the “.” name pre�x, e.g. “.kde3/”
and “.vimr c”. These �les (the “dot” �les) are usually found in private user accounts in the
/home tree,but in most casesyou won't seethem at all becausethe “dot” �les are hidden by
default. These�les are usually created by user applications to store user-speci�c con�gura-
tion and data �les, becausethe user account is usually the only dir ectory that applications
written by users can write to that is private to the user. The /etc tree is owned by root and
only system-wide con�guration can be made there by the system administrator , and the /tmp
treeare for temporary �les only and need to be periodically cleanedup to avoid accumulation
of useless�les, thus data �les that are to be kept cannot be placed into thesedir ectories. Due
to the large number of applications installed in the system,very likely large numbers of these
data �les have to be created in the user account. To avoid clutter and prevent the user from
accidentally deleting these �les, Unix hides these �les by default, unless you pass the -a
option to the ls command.

Ar e you wondering why I suddenly jump from my hard links discussion to “dot” �les? That
is becauseI am going to intr oduce to you two special “dot” �les that are present in every
dir ectory, namely “.” and “..”. MS-DOS also has the notion of these two special �les. They
are automatically created in a dir ectory when the dir ectory is created. They are in fact hard
links to the current dir ectory �le, and the parent dir ectory �le respectively. Therefore, they
appear as dir ectories with the ls -la command. “..” is used to refer to the parent dir ectory
in the dir ectory tree. For example, with the cd command, you can specify the name of a
subdirectory to go into it, but when you need to return to the parent dir ectory, you can use
the command

cd ..

As another example, cat ../../README.txt outputs the �le README.txt two levels upwar d.
For example, if you are in the dir ectory /home/cbkihong/docs /pe rl tut when you type the
above command, then the Unix shell will try to �nd the �le at /home/cbkihong/RE ADME.t xt
and display its content. The “.” dir ectory points to the current dir ectory. It seemsto be not
useful at all. However , I can �nd at least one use of it. For security reasons,many Unix
installations would not put the current dir ectory, that is “.” into the environment variable
PATH, especially for the root user. Therefore, if you have an executable �le, say myprog , in
your current dir ectory by just typing myprog the program will not be started at all, because
PATHis the executable search path that is used if the path to the executable is not speci�ed.
Dir ectories not listed in this variable will not be searched for executables. In this case,you
need to qualify it with the dir ectory where it can be found, by

./myprog

If the target �le is not an executable,the “./” pre�x is generally optional and well understood
if absent. Therefore, cat docs/README is generally understood to be cat ./docs/README .
Becauseof thesetwo special “dot” �les, you will �nd that the number of hard links pointing

184 Chapter C A Unix Primer

to dir ectoriesis never one. As a bare minimum thereare two, one due to “.” and the other one
from the parent dir ectory �le inode. If there are subdirectories, then “..” in the subdirectories
will add to the number of hard links pointing to the current dir ectory inode. If there are extra
hard links created manually to the current dir ectory, then there are even more. For example,

/
bin/
etc/
home/

cbkihong/

The /home dir ectory inode has 3 hard links pointing to it. However , there are 5 for / , that
is becausethere is no parent dir ectory for / , and for consistency the “..” in / also points
to itself. Together with “.” and “..” from the 3 subdirectories,the hard link count is therefore5.

Symbolic links are more widely used becausesymbolic links only stores an alternative path
name and canbe used provided the alternative path is accessiblefrom the dir ectory tree.That
is, symbolic links may point to a destination that is on a dif ferent �lesystem. For example,
a symbolic link on my Linux reiserfs partition may point to a �le on the Windows FAT
partition, which does not even have the notion of hard links (did I tell you that you cannot
create a hard link on a mounted Windows partition at all?). On the other hand, hard links
cannot cross �lesystems, and they are only supported on Unix-compatible �lesystems, so
their areasof application are rather limited.

C.2.3 Permission and Ownership

Because Unix is from the ground up a multi-user operating system, a permission and
ownership system has to be in place to control who have accessto resourcesand how they
can accessthem. In Unix �lesystems, every �le hasan owner, the user who created the �le on
the �lesystem. Apart from the owner, each�le is associatedwith a group. The ls command
with the -l switch causesthe dir ectory listing to be printed in the long format, with the name
of the owner and group printed in the thir d and fourth column, respectively:

cbki hong@cbkih ong: � /d ocs/ per l t ut $ l s - l
dr wxr - xr -x 2 cbki hong user s 477 2003- 06- 20 14: 25 i mages
-rw -r - -r - - 1 cbki hong user s 657800 2003- 06- 20 14: 28 per l t ut . pdf
-rw -r - -r - - 1 cbki hong user s 4012769 2003- 06- 20 14: 28 per l t ut . ps
-rw -r - -r - - 1 cbki hong user s 3887 2003- 06- 19 19: 17 per l t ut . t ex

In this example, the �les have the owner “cbkihong” and belong to the group “users”. To
control how dif ferent users can accessthe �les, three sets of permission bits are assigned
to each �le which specify permissions that are given to the owner, group members and
everybody else. The permission values are re�ected by the �rst column of the �le listing
obtained by the ls command above. The �rst character indicate the type of the �le. The
remaining nine charactersrepresent the permission values. Here is a summary of what each
charactermeanswith respectto a dir ectory and a regular �le:

Let's take the �rst two entries in the example listing above as an example. For the “images”
dir ectory, we divide the permission values into threesets:

C.2 Filesystems and Processes 185

Regular File
Bit Value Meaning
r 4 Read�le content
w 2 Modify the �le content
x 1 Executethe �le

Dir ectory
Bit Value Meaning
r 4 Readdir ectory listing
w 2 Create/delete �les in the dir ectory
x 1 Enter the dir ectory

TableC.2: FilesystemPermissionvalues

file type owner group everybody else
d rwx r-x r-x

Everybody on the system can read the dir ectory listing and enter the dir ectory. However ,
only the owner “cbkihong” can add new �les or remove �les from the dir ectory. To read the
dir ectory listing means you get a list of names that represent the �les (including subdirecto-
ries and symbolic links etc.) in the dir ectory. For example, if you enable the “x” bit but not
the “r ” bit, the command ls images/ will fail becausethis operation involves getting the
dir ectory listing. However , the command cat images/README.txt will be successful if the
�le README.txt exists in the “images” dir ectory becausedir ectory listing is not involved in
the operation. On the other hand, if the “r ” bit is enabled but not the “x” bit, you can see
the list of �les in the dir ectory, but you cannot accessthem. Changing into the dir ectory with
the command cd will also fail. Becausesuch a combination of permission bits is somewhat
nonsensein practical use, for dir ectories usually the “r ” and “x” bits go together — either
you enableor disable both of them, but not enabling one and not the other.

Unix groups are not frequently used in practice, but they can be good for sharing of �les
among users on the system in a simple way. For example, a �le server in a company may
have a “managers” group whose members consist of managers from all departments. The
server may have a dir ectory called “r eports” containing reports prepared by the managerial
for all staff. If the dir ectory is not in the /home tree, it is very likely owned by the system
administrator (root). However , the administrator may set the group to “managers” and set
the group “w” bit to allow the managers to put their reports into the dir ectory, while other
staff usersonly have read access.A possible con�guration is shown below:

dr wxr wxr -x 2 r oot manager s 477 2003- 07- 20 14: 38 r epor t s

For the “perltut.pdf ” �le in the sample �le listing above, the permission values are asfollows:

file type owner group everybody else
- rw- r-- r--

That meanseverybody can read the �le, but only the owner can modify it. Somepeople have
misconceptions on Unix permissions that one needs dir ectory write permission to modify a
�le in the dir ectory. The fact is only the �le write permission is needed. Also, somemay think

186 Chapter C A Unix Primer

to delete a �le one needswritable permission to that �le. Only the dir ectory write permission
is needed in this case. If you understand my description above fully , you are not going to
make thesekinds of mistakes.

Note that internally (for example, in the inodes) owners and groups are represented by
numbers instead of names such as “cbkihong” and “users”. That is because storage of
integers uses less space compared with names. On most systems, the /etc/passwd stores
the mapping between user ID and username, while /etc/group stores the mapping between
group ID and group name. They are used to resolve the mnemonic names for display as
output of commands such asps and ls etc.

In Table C.2 you seea column with the heading “Value”. Internally , to store the permission
values in a morecompact form the permissions are encoded into a number. Take the “images”
dir ectory as an example. The permission value “drwxr -xr-x” may be converted to numeric
representation as follows:

Owner (rwx): 4+ 2+ 1 = 7
Group (r-x): 4+ 1 = 5
Everybody else(r-x): 4+ 1 = 5

The character “d” is only an indication that this is a dir ectory, so it's not a permission value.
Therefore, the numeric representation is 755,by concatenating the permission values for the
owner, group and everybody else. Pleasenote that the permission values of symbolic links
are not used in practice, and are set to 777(lrwxrwxrwx) by default.

C.2.4 Processes

Once executable permission is applied to a �le, it can then be executed by the system. A
program in execution is called a process. Each process has an owner and is associated
with a group, similar to the caseof �les on a �lesystem. Each processis associated with
four identi�ers. Apart from the user ID and group ID, a processalso has an effective user
ID and an effective group ID . In general, when an executable �le is being executed, the
user ID is that of the user who executed the program, and the group ID is that assigned to
the user when the user account was created. In general, the effective user ID is the same
as user ID, and the effective group ID is the same as group ID. They are dif ferent only
if the �le being executed has either the setuid or setgid bit set, which are two additional
permission bits that are useful only to executable �les and will be described in the next sec-
tion. They areseldom needed,and their useareusually not justi�ed unlesswith good reasons.

The enforcement of an ownership system on processesprevents unauthorized users from
modifying the state of the processes,for example, to terminate them. In general, only root or
the users whose user ID matches the user ID or effective user ID of a processare allowed to
change the state of a process. You can change the state of a processby sending it a signal ,
that is, a messagesent from the operating system kernel to a process. From a user's point
of view, a processcan be in one of several states: running, suspended or terminated. We
can use the kill command to send a signal to a process.The signals that are most frequently
used include SIGHUP (1), SIGINT (2), SIGKILL (9), SIGSTOP (19) and SIGCONT(18). The way
SIGHUPis handled is process-speci�c. It is generally widely supported that when a daemon
processreceives this signal, it rereads its con�guration �les. This is convenient for system
administrators to effectuate changes made to the con�guration �les without restarting the

C.2 Filesystems and Processes 187

daemon process. The SIGINT signal is what is sent to a process when the user presses
Ctrl-C. In most cases, the process is terminated. However , some processesare de�ned
to catch the signal and thus prevent it from being terminated. For example, Ctrl-C is a
combination key de�ned in emacs,so it has to catch the signal. In this case,you may try to
send the SIGTERM(15) signal. Runaway processescan generally be abruptly terminated by
the SIGKILL signal. The SIGSTOP signal causesthe processto be suspended. Both SIGKILL
and SIGSTOP cannot be caught by any processes,and therefore provided you have the
permission to change the state of the processthese two signals should succeed,at least in
theory. However , there are a few occasions when the process,or even other parts of the
operating system are ignoring these signals. This is a sign of inauspiciousness and you are
advised to restart your system if this happens to you (but probably by then it is already too
late). For a suspended process,you can put it back to running state by sending it a SIGCONT
signal. You cansenda signal using kill in several forms, asshown in the following examples:

kill -SIGHUP 826
kill -HUP 826
kill -1 826

You can use the name of the signal or the signal ID to specify the signal to send to the
process. Because all Unix signal names actually start with the pre�x “SIG”, you may
omit this pre�x to reduce the amount of typing. The last argument to kill is the process
ID. Each processhas an ID to uniquely identify a process. You should check the process
ID by using the ps command, which is displayed on the far left. Most systems also have
a killall command which freesyou from the needof looking up the processID. For example,

killall -SIGINT myprog

which tries to terminate all instances of the program mypr og. However , kill is a more
reliable choice on someUnix variants, or where killall is not available.

A side note about the executableand read permission of executable�les. I have recently seen
a question raised on a Unix forum about making a shell script executable but not readable
by other users on the system. The answer is that is not possible to use the permission 711
(rwx–x–x). There are two main types of executable programs. Either they are compiled
into an executable object code (binary) format that can be executed dir ectly (e.g., compiled
programs written in C), or shell scripts (e.g. perl or sh scripts). If the executableis in an object
format supported by the operating system kernel, it can be dir ectly loaded and executed by
the kernel. Today two main binary formats are supported on Unix, namely a.out and ELF
(Executableand Linkable Format). a.out is well supported, but is quickly replacedby ELF on
many Unix platforms. In the caseof executablescripts, on the other hand, the kernel needs
to load the interpr eter instead, and the interpr eter executesthe script instead. To executethe
script, the interpr eter needs to have read accessof the script. That's why you can't use 711
as the script permission if everybody needsto executeit. This works for compiled programs,
though.

C.2.5 The Special Permission Bits

Apart from the 9 permission bits that canbe set for every �le, there are two special option bits
that pertain to executable

188 Chapter C A Unix Primer

Appendix D

BNF Grammar of Selected Functions

Here, I will present the full grammar of selected functions using the Backus-Naur Form
(BNF), a widely-used and systematic method of representing syntax (grammar) of computer
languages.

D.1 sprintf() /printf()

<pl acehol der > : : = % <mor e_at t r > <conv_t ype>
<conv_t ype> : : = % | c | s | d | u | o | x | X | e | E | f | g | G | b | p | n | e
<mor e_at t r > : : = <par am_i dx> <f l ags> <vect or > <mi n_wi dt h> <max_wi dt h> <si ze> <

f or mat _i dx >
<par am_i dx> : : = <num> | e
<f l ags> : : = <f l ag_base> <f l ag_si gnpr efix > <f l ag_paddi ng>
<f l ag_base> : : = # | e
<f l ag_si gnpr ef ix > : : = [| +] | e
<f l ag_paddi ng> : : = [0 | -] | e
<mi n_wi dt h> : : = <num> | <ar g> | e
<max_wi dt h> : : = . [<num> | *] | e
<ar g> : : = * [<num> $ | e]
<si ze> : : = l | h | q | L | l l | e

189

190 Chapter D BNF Grammar of Selected Functions

Appendix E

In The Next Edition

The following topics or modi�cations are planned to be included in the next edition of this
Perl 5 Tutorial. If you have any other suggestions on other topics of interest or amendments
to the content of this edition, pleasefeel freeto use my feedback forum or my email feedback
form to let me know. The links can be found on page 2.

? more full code examples and illustrative �gur es

? wantarray() for subroutines

? threading and fork() ing new processes

? mod perl

? Databaseaccesswith DBI and DBD::*

? intr oduction to XS

? internationalization support in Perl and PerlIO layers

? debugging facilities available in Perl

? GUI building with Tk

? Formats (unlikely , becauseit's really archaic)

? discussion of the internal structure of hashes

? more exampleson complex data structuresand algorithms implementations

? socketprogramming and existing CPAN classes(e.g. LWP)

? “her edoc” quotation syntax (I'm not fond of it but somepeople do use it)

? Regular expressions(Perl extensions)

? Exporter module in object-oriented programming

? more object-oriented design principles and examples

? coverageof File::* classes

191

	Introduction to Programming
	What is Perl?
	A Trivial Introduction to Computer Programming
	Scripts vs. Programs
	An Overview of the Software Development Process

	Getting Started
	What can Perl do?
	Comparison with Other Programming Languages
	C/C++
	PHP
	Java/JSP
	ASP

	What do I need to learn Perl?
	Make Good Use of Online Resources
	The Traditional ``Hello World'' Program
	How A Perl Program Is Executed
	Literals
	Numbers
	Strings

	Introduction to Data Structures

	Manipulation of Data Structures
	Scalar Variables
	Assignment
	Nomenclature
	Variable Substitution
	substr() --- Extraction of Substrings
	length() --- Length of String

	Lists and Arrays
	Creating an Array
	Adding Elements
	Getting the number of Elements in an Array
	Accessing Elements in an Array
	Removing Elements
	splice(): the Versatile Function
	Miscellaneous List-Related Functions
	Check for Existence of Elements in an Array (Avoid!)

	Hashes
	Assignment
	Accessing elements in the Hash
	Removing Elements from a Hash
	Searching for an Element in a Hash

	Contexts
	Miscellaneous Issues with Lists

	Operators
	Introduction
	Description of some Operators
	Arithmetic Operators
	String Manipulation Operators
	Comparison Operators
	Equality Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Other Operators

	Operator Precedence and Associativity
	Constructing Your Own sort() Routine

	Conditionals, Loops & Subroutines
	Breaking Up Your Code
	Sourcing External Files with require()

	Scope and Code Blocks
	Introduction to Associations
	Code Blocks

	Subroutines
	Creating and Using A Subroutine
	Prototypes
	Recursion

	Packages
	Declaring a Package
	Package Variable Referencing
	Package Variables and Symbol Tables

	Lexical Binding and Dynamic Binding
	Conditionals
	Loops
	for loop
	while loop
	foreach loop
	Loop Control Statements

	References
	Introduction
	References Primer
	Creating a Reference
	Using References
	Pass By Reference

	How Everything Fits Together
	Typeglobs

	Object-Oriented Programming
	Introduction
	Object-Oriented Concepts
	Programming Paradigms
	Basic Ideas
	Fundamental Elements of Object-Oriented Programming

	OOP Primer: Statistics
	Creating and Using A Perl Class
	How A Class Is Instantiated

	Inheritance
	Another Example: Traffic Light Simulation

	Files and Filehandles
	Introduction
	Filehandles
	open a File
	Output Redirection

	File Input and Output Functions
	readline() --- Reads A Line from Filehandle
	binmode() --- Binary Mode Declaration
	read() --- Reads A Specified Number of Characters from Filehandle
	print()/printf() --- Output To A FileHandle
	seek() --- Sets File Pointer Position
	tell() --- Returns File Pointer Position
	close() --- Close An opened File

	Directory Traversal Functions
	opendir() --- Opens A Directory
	readdir() --- Reads Directory Index
	Example: File Search

	File Test Operators
	File Locking

	Regular Expressions
	Introduction
	Building a Pattern
	Getting your Foot Wet
	Introduction to m// and the Binding Operator
	Metacharacters
	Quantifiers
	Character Classes
	Backtracking

	Regular Expression Operators
	m// --- Pattern Matching
	s/// --- Search and Replace
	tr/// --- Global Character Transliteration

	Putting It All Together

	CGI Programming
	Introduction
	Static Content and Dynamic Content
	The Hypertext Markup Language
	The World Wide Web

	What is CGI?
	Your First CGI Program
	GET vs. POST
	File Upload
	Important Environment Variables
	CGI Environment Variables

	Server Side Includes
	Security Issues
	Why Should I Care?
	Some Forms of Attack Explained
	Safe CGI Scripting Guidelines

	Questions

	Administration
	CPAN
	Accessing the Module Database on the Web
	Package Managers
	Installing Modules using CPAN.pm
	Installing Modules --- The Traditional Way

	Setting Up A Web Server
	Apache
	Microsoft Windows
	Unix

	A Unix Primer
	Introduction
	Why Should I Care About Unix?
	What Is Unix?
	The Overall Structure

	Filesystems and Processes
	Overview
	Symbolic Links and Hard Links
	Permission and Ownership
	Processes
	The Special Permission Bits

	BNF Grammar of Selected Functions
	sprintf()/printf()

