Perl 5 Tutornal

First Edition
(ReleaseCandidate 1)

Chan Bernard Ki Hong

Perl is copyright by Larry Wall.
Linux is atrademark of Linus Torvalds.
Unix is atrademark of AT&T Bell Laboratories.

Perl 5 Tutorial

First Edition

Author: Chan Bernard Ki Hong (webmaster@cbkihong .co m
Web site: http://www .cbkihong.com

Date of Printing: August 29,2003

Prepared from IATEX source les by the author.

Important: Please note that this is a preview edition of the document and is released for
collection of feedback purposes only. Therefore, drastic modi cations may be made to this
document at any time until it is completed and nalized.

DISCLAIMER

This document is released“as is” without guarantee for accuracy or suitability of any kind, so
useit at your own risk. However, if you notice any errors, or have any suggestionson how |
can further impr ove this tutorial, pleasefeel freeto forward me your comments through the
email feedbackform or feedback forum. Your comments are very much appreciated.

http://www.cbkihong.com
http://www.cbkihong.com/index.pl?page=feedback&lang=e#email
http://forum.cbkihong.com

Contents

1

Introduction to Programming

1.2 A Trivial Intr oduction to Computer Programming
1.3 Scriptsvs. Programs e e e e
1.4 An Overview of the Software Development Process

Getting Started

2.2 Comparison with Other Programming Languages

2.3
2.4
2.5
2.6
2.7

2.8

221
222
223
224

ClCH e
PHP e
JavaldSP e
ASP . . e

What do | needtolearnPerl?
Make Good Useof Online Resources
The Traditional “Hello World” Program
How A PerlProgram IsExecuted
Literals

2.7.1
2.7.2

Numbers e e
StNgS e e e

Introduction to Data Structures e e

Manipulation of Data Structures
3.1 ScalarVariables e

3.2

3.3

3.1.1
3.1.2
3.1.3
3.14
3.15

ASSIGNMENT . . . L L e e
Nomenclature
Variable Substitution o o L
substr() — Extraction of Substrings.
length) —LengthofString

Listsand Arrays o o i e e e e e e

3.2.1
3.2.2
3.2.3
3.24
3.25
3.2.6
3.2.7
3.2.8

Creating @an Array o o ot i e
Adding Elements
Getting the number of Elementsin anArray
AccessingElementsin anArray o000
Removing Elements
splice() :the Versatile Function
Miscellaneous List-Related Functions
Checkfor Existenceof Elementsin an Array (Avoid!)

Hashes e,

3.3.1

ASSIGNMENT L e e e

F O NGNS N

© © 00 0 oo NN

12

i CONTENTS
3.3.2 AccessingelementsintheHash. 40
3.3.3 Removing ElementsfromaHash 41
3.3.4 Seaching for anElementinaHash 42
34 Contexts e 43
3.5 MiscellaneousIssueswith Lists 44
4 Operators 47
4.1 Introduction 47
4.2 Description of someOperators e 48
4.2.1 Arithmetic Operators. i i e 48
4.2.2 String Manipulation Operators 50
4.2.3 Comparison Operators v i i i e e 51
4.2.4 Equality Operators e e 54
425 Logical Operators o v v i e e e e e e e 55
4.2.6 Bitwise Operators e e 57
4.2.7 Assignment Operatorso e e 58
4.2.8 Other Operators i i it e e e e 59
4.3 Operator Precedenceand Associativity 60
4.4 Constructing Your Own sort() Routine 65
5 Conditionals, Loops & Subroutines 67
5.1 BreakingUp Your Code e 67
5.1.1 Sourcing External Fileswith require() 67
5.2 Scopeand CodeBlocks 69
5.2.1 Introduction to Associations 69
5,22 CodeBIocks e 69
5.3 Subroutines 70
5.3.1 Creating and Using A Subroutine 71
5.3.2 Prototypes 74
5.3.3 RecUursion 76
54 Packages 78
5.4.1 DeclaringaPackage e 78
5.4.2 PackageVariable Referencing 79
5.4.3 PackageVariablesand Symbol Tables 80
5.5 Lexical Binding and Dynamic Binding 80
5.6 Conditionals 84
5.7 LOOPS . . . o o e e 86
5.7.1 for loop e 86
5.7.2 while loop e 88
5.7.3 foreach loop e 88
5.7.4 Loop Control Statements 89
6 References 91
6.1 Introduction 91
6.2 ReferencesPrimer 91
6.2.1 CreatingaReference e 91
6.2.2 UsingReferences 94
6.2.3 PassByReference. 96
6.3 How Everything FitsTogether 97
6.4 Typeglobs 98

CONTENTS iii

7 Object-Oriented Programming 101
7.1 Introduction 101
7.2 Object-Oriented CONCEPLS o o it i e e e e e e 102

7.2.1 Programming Paradigms 0. 102
7.22 Basicldeas. e 102
7.2.3 Fundamental Elements of Object-Oriented Programming 103
7.3 OOPPrimer: Statistics e 103
7.3.1 CreatingandUsing A PerlClass 107
7.3.2 How A ClasslsInstantiated 108
7.4 Inheritance 109
7.5 Another Example: Traf ¢ Light Simulation 114

8 Files and Filehandles 119
8.1 Introduction 119
8.2 Filehandles 120

8.2.1 openakFile e 120
8.2.2 Output Redirection e 122
8.3 File Input and Output Functions 0.... 122
8.3.1 readline() = — ReadsA Line fromFilehandle 122
8.3.2 binmode() — Binary Mode Declaration 123
8.3.3 read() — ReadsA Specied Number of Charactersfrom Filehandle . . 123
8.3.4 print()/printf() — Output ToA FileHandle 124
8.3.5 seek() — SetsFile Pointer Position 125
8.3.6 tel) — Returns File Pointer Position 125
8.3.7 close() —CloseAnopenedFile 126
8.4 Directory Traversal Functions e 126
8.4.1 opendir) —OpensADirectory 126
8.4.2 readdir) — ReadsDirectorylIndex 127
8.4.3 Example:FileSeach 127
8.5 FileTestOperators i e 129
8.6 FileLocking e e 130

9 Regular Expressions 135
9.1 Introduction 135
9.2 Building aPattern e 136

9.2.1 Getting your FootWet 136
9.2.2 Introduction to m// and the Binding Operator 137
9.2.3 Metacharacters i e 138
9.24 QuaNtiers i i e e e 139
9.25 CharacterClasses. o v i i i i e 139
9.2.6 Backtracking e 140
9.3 Regular ExpressionOperators i i e e 141
9.3.1 m/l —PatternMatching 141
9.3.2 sl —SeachandReplace 142
9.3.3 tr/ll — Global Character Transliteration 142

9.4 Putting It All Together e 143

iv. CONTENTS

10 CGI Programming
10.1 Introduction e
10.2 StaticContent and Dynamic Content
10.2.1 The Hypertext Markup Language
10.2.2 TheWorld WideWeb

10.4 Your First CGI Program o e e
105 GETVS. POST e e e s e e
10.6 FileUpload e e e
10.7 Important Environment Variables.
10.7.1 CGIl Environment Variables
10.8 ServerSidelncludes
10.9 SeCUNty ISSUBS o i o e e e
10.9.1 Why Should I Care? e
10.9.2 SomeForms of Attack Explained
10.9.3 SafeCGl Scripting Guidelines,
10.100QUESHIONS . . o v o e e e e e e e e e e

A Administration
Al CPAN . . e
A.1.1 Accessingthe Module DatabaseontheWeb
A.1.2 PackageManagers
A.1.3 Installing Modules using CPAN.pm
A.1.4 Installing Modules — The Traditional Way

B Setting Up A Web Server
B.1 Apache e
B.1.1 Microsoft Windows e
B.1.2 UniX e e e

C A Unix Primer
C.1 Introduction
C.1.1 Why Should | Care About Unix?
C.1.2 WhatlIsUnix? e
C.1.3 TheOwverall Structure e
C.2 Filesystemsand Processes. i i i i e
C.2.1 OVEIVIEW . . o i e e e e
C.2.2 SymbolicLinks and Hard Links
C.2.3 Permissionand Ownership
C.2.4 PrOCESSES. . . . o vt i e e e e e
C.2.5 TheSpecialPermissionBits

D BNF Grammar of Selected Functions
D.1 sprintf() /printf) ... e

E In The Next Edition

Preface

If you are looking for a free Perl tutorial that is packed with everything you need to know
to get started on Perl programming, look no further. Presenting before you is probably the
most comprehensive Perl tutorial on the Web, the product of two years of diligence seeking
referencefrom related books and web sites.

Perl is a programming language that is offered at no cost. Sowouldn't it be nice if you can
also learn it at no cost? Packed with some background knowledge of programming in C++
and Visual Basic,when | started learning Perl several yearsago, | couldn't even nd one good
online tutorial that covered at least the basicsof the Perl language and was free. Most Perl
tutorials | could nd merely covered the very basictopics such asscalar/list assignment, op-
erators and some ow control structuresetc. On the other hand, although | have accumulated
certain levels of experiencein a number of programming languages, the of cial Perl manual
pages are quite technical with whole pagesof jargons that | was not very familiar with. As
a result, the book “Learning Perl” written by Larry Wall, the inventor of the Perl language,
naturally becamethe only Perl textbook available. The O'Reilly Perl Seriespresentthe most
authoritative and well-written resourceson the subjectwritten by the core developers of Perl.
While you are strongly recommended to grab one copy of eachif you have the money, they
are not so cheap, though, and that's the motive behind my writing of this tutorial — so that
more people with no programming background can start learning this stupendous and pow-
erful language in a more cost-effective way.

Although this tutorial covers a rather wide range of topics, similar to that you can nd from
some other Perl guidebooks, you are strongly encouraged to read those books too, since their
paedagogiesof teaching may suit you more.

Here are several featuresof this tutorial:

? As this is not a printed book, | will constantly add new materials to this tutorial as
needed, thus enriching the content of this tutorial. Moreover, in order to help me im-
prove the quality of this tutorial, it is crucial that you forwar d me your comments and
suggestionssothat | can further make impr ovements to it.

? In responseto requests made from several visitors, this tutorial, in PDF format, has
been made available for download. | hope this will help those who are charged on
time basis for connecting to the Internet. This tutorial is typeset in IATEX, a renowned
document typesetting systemthat hasbeenwidely usedin the academiccommunity on
Unix-compatible systems (although it has now been available on nearly any operating
systems you can think of). In general, the PDF version will be updated prior to the
online HTML version.

? Youwill nd alist of web links and referencesto book chapters after eachchapter which

\Y

Vi Preface

contains additional materials that ambitious learners will nd helpful to further your
understanding of the subject.

? Throughout the text there would be many examples. In this tutorial, you will nd two
types of examples — examples and illustrations . lllustrations are intended to demon-
strate a particular conceptjust mentioned, and are shorter in general. You will nd them
embedded inline throughout the tutorial. On the other hand, examples are more func-
tional and resemblepractical scripts, and are usually simplied versions of such. They
usually demonstrate how different parts of a script can work together to realize the
desired functionalities or consolidate some important conceptslearned in a particular
chapter.

? If applicable, therewill be some exercisesin the form of conceptconsolidation questions
aswell asprogramming exercisesat the end of eachchapter to give readerschancesto
testhow much they understand the materials learned from this tutorial and apply their
knowledge through practice.

This is the rst edition of the Perl 5 tutorial. It primarily focuseson fundamental Perl pro-
gramming knowledge that any Perl programmer should be familiar with. | start with some
basic ideas behind computer programming in general, and then move on to basic Perl pro-
gramming with elementary topics such asoperators and simple data structur es. The chapter
on scoping and subroutines is the gateway to subsequent,but more advanced topics such as
referencesand object-oriented programming. The remaining chapters are rather assortedin
topic, covering the use of lehandles, le 1/0 and regular expressionsin detail. The nal

chapter on CGI programming builds on knowledge covered in all earlier chapters. Readers
will learn how to write a Perl program that can be used for dynamic scripting on the World
Wide Web. However short, the main text already embracesthe most important fundamental
subjectsin the Perl programming language. In the appendices, instructions are given on ac-
quiring and installing Perl modules, setting up a basicbut functional CGl-enabled Web server
for script testing, and there is a voluminous coverage of Unix fundamentals. As much of Perl
is basedon Unix concepts,| believe a brief understanding of this operating system is bene -
cial to Perl programmers. While authoring of this tutorial cannot go inde nitely , topics that
were planned but cannot be included in this edition subjectto time constraints are deferred to
the secondedition. A list of thesetopics appear at the end of this document for your reference.

It is important for me to reiterate that this document is not intended to be a substitute for
the of cial Perl manual pages (aka man pagey and other of cial Perl literatur e. In fact, it is
the set of manual pagesthat covers the Perl language in suf ciently ne detail, and it will
be the most important set of document after you have accumulated certain level of knowl-
edge and programming experience. The Perl man pagesare written in the most conciseand
correct technical parlance, and as a result they are not very suitable for new programmers
to understand. The primary objective of this tutorial is to bridge the gap so asto supple-
ment readerswith suf cient knowledge to understand the man pages. Therefore, this tutorial
presentsa dif ferent perspective compared with some other Perl guidebooks available at your
local bookstores from the mainstream computer book publishers. With a Computer Science
background, | intend to go morein-depth into the principles which are central to the study of
programming languagesin general. Apart from describing the syntax and language features
of Perl, | also tried to draw together the classicalprogramming language design theories and
explained how they are applied in Perl. With this knowledge, it is hoped that readers can
better understand the jargons presentedin manual pagesand the principles behind. Perl is
attributed by some as a very cryptic language and is dif cult to learn. However, those who
are knowledgeable with programming language design principles would agree Perl imple-

Vii

ments a very rich setof language features, and therefore is an ideal language for students to
experiment with different programming language design principles taught in classin action.
| do hope that after you have nished reading this tutorial you will be able to explore the
Perl horizons on your own with con dence and experience the exciting possibilities associ-
ated with the language more easily. “To helpyoulearnhowto learn” has always beenthe chief
methodology followed in this tutorial.

Time ies. Today when | am revising this preface,which was actually written before | made
my initial preview releasein late 2001according to the timestamp, | am aghastto nd that
it has already been nearly two years since | started writing it. Indeed, a lot of things have
changed in two years. Several Perl manpages written in tutorial-style have been included
into the core distribution, which are written in amore gentle way targeted at beginners. There
are also more Perl resourcesonline today than it has beentwo years ago. However, | believe
through preparing this tutorial | have also learnt alot in the process.

At last, thank you very much for choosing this tutorial. Welcometo the exciting world of Perl

programming!

Bernard Chan
315t August, 2003

Viii Preface

Typographical Conventions

Although care has been taken towards establishing a consistent typographical convention
throughout this tutorial, considering this is the rst time | try to publish in IATEX , slight de-
viations may be found in certain parts of this document. Here | put down the convention to
which | tried to adhere:

Elementsin programming languagesare typesetin monospace font .

Keywor ds are typesetin bold .

Profound sayings or quotes are typeset in italic.

In source code listings, very long lines are broken into several lines. { is placed wherever a
line break occurs.

Chapter 1

Introduction to Programming

1.1 What is Perl?

Extracted from the perl manpage,
“Perl is aninterpretedhigh-levelprogramminglanguagedevelopey Larry Wall.”

If you have not learnt any programming languages before, as this is not a prerequisite of
this tutorial, this de nition may appear exotic for you. The two keywor ds that you may not
understand are “interpr eted” and “high-level”. Becausethis tutorial is mainly for those who
do not have any programming experience, it is better for me to give you a general pictur e as
to how a computer program is developed. This helps you understand this de nition.

1.2 A Trivial Introduction to Computer Programming

You should know that, regardless of the programming language you are using, you have to
write something that we usually refer to as source code, which include a set of instructions
for the computer to to perform some operations dictated by the programmer. There are two
ways asto how the source code can be executed by the Central ProcessingUnit (CPU) inside
your computer. The rst way is to go through two processescompilation and linking , to
transform the sourcecodeinto machine code, which is a le consisting of a seriesof numbers
only. This le isin aformat that can be recognized by the CPU readily, and does not require
any external programs for execution. Syntax errors are detected when the program is being
compiled. We describe this executable le asa compiled program. Most software programs
(e.g. most EXEsfor MS-DOS/W indows) installed in your computer fall within this type.

NOTES

There are some subtleties, though. For example, the compiler that comeswith Visual
Basic 6 Learning Edition translates source code into p-code (pseudo code) which
hasto be further converted to machine code at runtime. Suchan EXEis described as
interpr eted instead. Therefore, not all EXEsare compiled.

On the other hand, although Javais customarily considered an interpr eted language,
Javasource les are rst compiled into bytecode by the programmer, so syntactical
errors can be checkedat compile time.

http://www.perldoc.com/perl5.8.0/pod/perl.html

2 Chapter 1 Introduction to Programming

Another way is to leave the program uncompiled (or translate the source code to an interme-
diate level between machine code and source code, e.g. Java). However, the program cannot
be executed on its own. Instead, an external program has to be used to execute the source
code. This external program is known asan interpreter , becauseit actsasan intermediary to
interpr et the sourcecode in away the CPU canunderstand. Compilation is carried out by the
interpr eter before execution to check for syntax errors and convert the program into certain
internal form for execution. Therefore, the main difference between compiled programs and
interpr eted languagesis largely only the time of compilation phase. Compilation of compiled
programs is performed early, while for interpreted programs it is usually performed just
before the execution phase.

Every approach has its respective merits. Usually, a compiled program only has to be
compiled once, and thus syntax checking is only performed once. What the operating system
only needs to do is to read the compiled program and the instructions encoded can be
arranged for execution by the CPU dir ectly. However, interpr eted programs usually have to
perform syntax check every time the program is executed, and a further compilation step
is needed. Therefore, startup time of compiled programs are usually shorter and execution
of the program is usually faster. For two functionally equivalent programs, a compiled
program generally gives higher performance than the interpreted program. Therefore,
performance-critical applications are generally compiled. However, there are a number of
factors, e.g. optimization, that in uence the actual performance. Also, the end user of a com-
piled program does not need to have any interpr etersinstalled in order to run the program.
This convenience factor is important to some users. On the other hand, interpr eters have to
beinstalled in order to executea program that is interpr eted. One example is the JavaVirtual

Machine (JVM) that is an interpr eter plugged into your browser to support Javaapplets.
Javasource les are translated into Javabytecode, which is then executed by the interpr eter.
There are some drawbacks for a compiled program. For example, every time you would like
to test your software to seeif it works properly, you have to compile and link the program.
This makes it rather annoying for programmers to x the errors in the program (debug),
although the use of make les alleviates most of this hassle from you. Becausecompilation

translates the source code to machine code which can be executed by the hardwar e circuitry
in the CPU, this processcreatesa le in machine code that depends on the instruction set
of the computer (machine-dependent). On the other hand, interpr eted programs are usually
platform-independent , that is, the program is not affected by the operating system on which
the program is executed. Therefore, for example, if you have a Javaapplet on aWeb site, it can
most probably be executed correctly regardless of the operating system or browser a visitor
is using. It is also easierto debug an interpr eted program becauserepeated compilation is
waived.

Recall that | mentioned that a compiled program consists entirely of numbers. Becausea
CPU is actually an electronic circuit, and a digital circuit mainly deals with Booleans(i.e. 0
and 1), soit is obvious that programs used by this circuit have to be sequencesof Osand 1s.
This is what machine code actually is. However, programming entirely with numbers is an
extreme deterrent to computer programming, becausenumeric programming is highly prone
to mistakes and debugging is very dif cult. Therefore, assembly language was invented to
allow programmers to use mnemonic names to write programs. An assembleris used to
translate the assembly language source into machine code. Assembly language is described
asalow-level programming language, becausethe actions of an assembly language program
are mainly hardwar e operations, for example, moving bits of data from one memory location
to another. Programming using assembly language is actually analogous to that of machine
codein disguise, soit is still not programmer friendly enough.

1.2 A Trivial Introduction to Computer Programming 3

TERMINOLOGY

Instruction set refers to the set of instructions that the CPU executes. There are a
number of types of microprocessorsnowadays. For example, IBM-compatible PCs
are now using the Intel-based instruction set. This is the instruction set that most
computer usersare using. Another prominent example is the Motor ola 68000series
microprocessorsin Macintosh computers. There are some other microprocessor
types which exist in minority . The instruction sets of these microprocessorsare
dif ferent and, therefore, a Windows program cannot be executed unadapted on a
Macintosh computer. In a more technical parlance, dif ferent microprocessorshave
dif ferent instruction setarchitectures.

Somemathematicians and computer scientists beganto develop languageswhich were more
machine-independent and intuitive to programmers that today we refer to as high-level
programming languages. The rst several high-level languages, like FORTRAN, LISP,
COBOL, were designed for specialized purposes. It was not until BASIC (Beginner's All-
purpose Symbolic Instruction Code)was invented in 1966that made computer programming
unpr ecedentedly easy and popular. It was the rst widely-used high-level language for
general purpose. Many programmers nowadays use C++, another high-level language, to
write software programs. The reasonwhy we call these “high-level languages” is that they
were built on top of low-level languages and hid the complexity of low-level languages
from the programmers. All such complexities are handled by the interpr eters or compilers
automatically. This is an important design conceptin computer sciencecalled abstraction.

That's enough background information and we can now apply the concepts learned above
to Perl. Perl (Practical Extraction and Reporting Language) was designed by Larry Wall,
who continues to develop newer versions of the Perl language for the Perl community today.
Perl does not create standalone programs and Perl programs have to be executed by a Perl
interpr eter. Perl interpr eters are now available for virtually any operating system, including
but not limited to Micr osoft Windows (Win32) and many avours of Unix. As | quoted above,
“Perl is alanguageoptimizedfor scanningarbitrary text les, extractinginformationfromthosetext
les, and printing reportsbasedn that information.” This precisedescription best summarizes
the strength of Perl, mainly becausePerl has a powerful set of regular expressions with
which programmers can specify search criteria (patterns) precisely. You are going to seea
whole chapter devoted to regular expressionin Chapter 9. Perl is installed on many Web
serversnowadays for dynamic Web CGl scripting. Perl programs written asCGI applications
are executed on servers where the Perl source les are placed. Therefore, there is no need to
transfer the Perl sourceto and from the server (asopposed to client-side scripts like JavaScript
or Javaapplets). Guestbooks, discussion forums and many powerful applications for the Web
can be developed using Perl.

There is one point which makes Perl very exible — thereis always more than one approach
to accomplish a certain task, and programmers can pick whatever approach that best suits
the purpose.

4 Chapter 1 Introduction to Programming

1.3 Scripts vs. Programs

There has always been some arguments over whether to use the term “script” or “pr ogram”
for Perl source les. In general, a piece of code that is executed by hardwar e or a software
interpr eter, written in somekind of programming languages,is formally called a “pr ogram”.
This is a general term that applies to programs written in machine instructions, or any pro-
grams that are compiled or interpr eted. However, it is also common today to hear that people
use the term “script” to refer to programs that are interpr eted, especially those executed on
the command line. In my opinion, it is not important to draw a distinction between the two
terms as both are considered equally acceptable and understandable nowadays. In many
situations people just use both interchangeably.

| am more inclined towards calling Perl programs and CGIl programs running on a Perl
backend as scripts, so | will adhere to this terminology in this tutorial.

1.4 An Overview of the Software Development Process

An intuitive software development processis outlined below. Note that this processis not
tailor ed for Perl programming in particular. It is a general development processthat can be
applied to any programming projectswith any programming languages. For additional notes
speci ¢ to Perl, pleaserefer to the next chapter.

Becausethis tutorial does not assume readers to have any programming experience, it is
appropriate for me to give you an idea as to the procedure you will most probably follow
when you write your programs. In general, the processof development of a software project
could be broken down into anumber of stages.Hereis an outline of the stagesinvolved:

? Requirements Analysis

First you need to identify the requirements of the project. Simply speaking, you will
need to decide what your program should do (known as Functional Requirements),
and note down other requirementsthat are important but not related to the functions of
your program (known as Non-functional Requirements), for example, a requirement
that the user interface should be user friendly. You have to make a list of the require-
ments, and from it you will needto decide whether you have the capability to complete
them. You may alsowant to prioritize them such that the most important functionalities
are developed rst, and other parts can be added subsequently.

? Systems Design
From the requirements determined you canthen de ne the scopeof the project. Instead
of putting the whole program in one piece, we will now organize the program into
several components (or subsystems — a part of the entire system). As we will discuss
later in this tutorial, modularization facilitates code reuseand make correction of bugs
(debug) easier Two major models exist today — decomposition basedon functions and
decomposition basedon objects. After you have xed the model, you decide on which
functions or object methods are to be associatedwith which source le or object, and
determine how thesecomponents interact with eachother to perform the functionalities.
Note that you don't needto decide on how thesesource les or objectsare implemented
in real source code at this stage— it is just an overall view of the interaction between

1.4 An Overview of the Software Development Process 5

the components. We emphasize functional decomposition in the rst part of the tutorial,
while object-oriented programming will be covered in alater part of this tutorial.

Program Design

After we have determined how the components interact with each other, we can now
decide how each function or object method is implemented. For eachfunction, based
on the actions to perform you have to develop an algorithm , which is a well-de ned
programming-language-independent procedure to carry out the actions speci ed. You
may want to usea owchart or some pseudocode to illustrate the ow of the program.
Pseudocodeis expressedin a way resembling real programming source code, except
language-dependent constructs are omitted. As pseudocode is language independent,
you can transform an idea from pseudocode to source code in any programming lan-
guagesvery easily. Thereisn't asingle standardized pseudocode syntax. In many cases,
pseudocode can even be written in English-like statementsbecausepseudocodeis writ-
ten to demonstrate how a program is supposed to work, and provided it communicates
the idea clearly it suf ces. It is up to you asthe author to expresspseudocode in what-
ever way the algorithm is bestillustrated.

Coding

This is largely the continuation of the Program Design stageto transform your algorithm
into programming language constructs. If you have worked out the algorithm properly
this should be a piece of cake.

Unit Testing

Unit testing corresponds to Program Design. As eachfunction or object method has a
prede ned behaviour, they can be tested individually to seeif such behaviour agreeto
that de ned. Most of the time when we are talking about debugging, we are describing
this stage.

Systems Testing
SystemsTesting correspondsto SystemDesign. This is to testif the components interact
with eachother in exactly the sameway asdesigned in the SystemsDesign stage.

Requirements Validation

This correspondsto requirements analysis. The softwar e developed is compared against
the requirementsto ensure eachfunctionality hasbeenincorporated into the systemand
works asexpected.

Maintenance

By now the software hasbeendeveloped but you cannot simply abandon it. Most prob-
ably we still needto develop later versions, or apply patchesto the current one asnew
bugs are found in the program. Software for commercial distribution especially needs
investment of alot of time and effort at this stagecapturing user feedback, but software
not distributed commercially should also pay attention to this stage asthis affects how
well your software can be further developed.

Of course, for the examplesin this tutorial that are so short and simple we don't need such an
elaborate development procedure. However, you will nd when you develop a larger-scale
project that having a well-de ned procedure is essentialto keep your development process
in order.

This is just one of the many processmodels in existencetoday. Discussion of such process
models can be found in many fundamental text for Software Engineering , and are beyond

6 Chapter 1 Introduction to Programming

the scope of this tutorial. Actually, what | have presented was a variant of the Waterfall
process model, and is considered one that, when employed, is likely to delay project
schedules and result in increased costs of software development. The reason| present it
here is the Waterfall model is the one that is easiestto understand. Becausepresentation
of processmodels is out of the scope of the tutorial, some Web links will be presented at
the end of this chapter from which you will nd selectedtexts describing processmodels,
including the Rational Unied Processwhich | recommend as an impr oved processmodel
for larger-scaledevelopment projects. Adoption of an appropriate processmodel helps guide
the development processwith optimized usage of resources, increased productivity and
softwar e that are more fault-tolerant.

Web Links

1.1 Evolution of Programming Languages
http://lycoskids.infopleasmm/ce648/A0860536.html

1.2 Rational Unied ProcessWhitepapers
http://www.rational.com/poducts/rup/whitepaps.jg

http://lycoskids.infoplease.com/ce6/sci/A0860536.html
http://www.rational.com/products/rup/whitepapers.jsp

Chapter 2

Getting Started

2.1 What can Perl do?

| understand it is a full wastage of time for you to have read through half of a book to nd
that it is not the one you are looking for. Therefore, | am going to let you know what you will
learn by following this tutorial asearly aspossible.

If you are looking for a programming language to write an HTML editor that runs on the
Windows platform, or if you would like to write a Web browser or of ce suite, then Perl does
not seemto be an appropriate language for you. C/C++, Javaor (if you are using Windows)
Visual Basicare likely to be more appropriate choicesfor you.

Although it appearsthat Perlis not the optimum language for developing applications with
a graphical user interface (but you can, with Perl/Tk or native modules like WIN::GUI), it is
especially strong in doing text manipulation and extraction of useful information. Therefore,
with databaseinterfacing it is possible to build robust applications that require a lot of text
processingaswell asdatabasemanagement.

Perl is the most popular scripting language used to write scripts that utilize the Common

Gateway Interface (CGlI), and this is how most of us got to know this language in the rst

place. A cursory look at the CGl Resource Index web site provided me alisting of about 3000
Perl CGI scripts, compared with only 220written with C/C++, as of this writing. There are
guite many free Web hosts that allow you to deploy custom Perl CGI scripts, but in general
C/C++ CGil scripts are virtually only allowed unlessyou pay. In particular, there are several
famous programs written in Perl worth mentioning here:

? YaBBis an open source bulletin board system. While providing users with many ad-
vanced features that could only be found on commercial products, it remains a free
product. Many webmasters are now using YaBBto set up their BBS.Another popular
BBSwritten in Perl is ikonboard , featuring a MySQL/Postgr eSQL databaseback-end.

? Thanks to the powerful pattern matching functions in Perl, search engines can also be

written in Perl with unparalleled ease.Perlfect Seach is a very good Web site indexing
and searching system written in Perl.

You will learn more about Perl CGI programming in Chapter 10 of this tutorial.

http://www.cgi-resources.com
http://www.yabbforum.com
http://www.ikonboard.com
http://perlfect.com/freescripts/search

8 Chapter 2 Getting Started

2.2 Comparison with Other Programming Languages

There are many programming languages in use today, each of which placing its emphasis
on certain application domains and features. In the following section | will try to compare
Perl with several popular programming languages for the readersto decide whether Perl is
appropriate for them.

2.2.1 C/IC++

Perl is written in the C programming language. C is extensively used to develop many
system software. C++ is an extension of C, adding various new featuressuch asnamespaces,
templates, object-oriented programming and exception handling etc. BecauseC and C++
programs are compiled to native code, startup time of C/C++ programs is very short and
thus can be executed very efciently . Perl allows you to delegate part of your program
in C through the Perl-C XS interface. This Perl-C binding is extensively used by crypto-
graphic modules to implement the core cryptographic algorithms, becausesuch modules are
computation-intensive.

While C/C++ is good for performance-critical applications, C/C++ suffers from a number
of disadvantages. First, C/C++ programs are platform dependent. A C/C++ program
written on Unix is different from one on Windows becausethe libraries available on different
platforms are different. Second,becauseC/C++ is a very structured language, its syntax is
not as exible as scripting languages such as Perl, Tcl/Tk or (on Unix platforms) bash. If
you are to write two functionally equivalent programs with C/C++ and Perl, very likely
the C/C++ version requires more lines of code compared with Perl. And also, impr operly
written C/C++ programs are vulnerable to memory leak problems where heap memory
allocated are not returned when the program exits. On a Web server running 24 7 with alot
of visitors, a CGlI script with memory leak is suf cient to paralyze the machine.

2.2.2 PHP

Perl has beenthe traditional language of choice for writing server-side CGlI scripts. However,
in recentyears there has been an extensive migration from Perl to PHP. Many programmers,
especially those who are new to programming, have chosenPHP instead of Perl. What are
the advantagesof PHP over Perl?

PHP is from its infancy Web-scripting oriented. Similar to ASP or JSPRit allows embedding
of inline PHP code inside HTML documents that makes it very convenient to embed small
snippets of PHP code, e.g. to update a counter when a visitor views a page. Perl needs
an additional package “eperl” to implement a similar functionality . Also, it inherits its
language syntax from a number of languagessothat it hasthe bestfeaturesof many different
languages. It mainly inherits from C/C++, and portions from Perl and Java. It uses|/O

functions similar to that in C, that are also inherited into Perl, soit is relatively easyfor Perl
programmers to migrate to PHP.

While PHP supports the object-oriented paradigm, most of its functionalities are provided
through functions. When PHP is compiled the administrator decides the setsof functionali-
ties to enable. This in turn determines the sets of functions enabled in the PHP installation.
I'm personally sceptical of this approach, becausein practice only a small subset of these

2.2 Comparison with Other Programming Languages 9

functions is frequently used. On the other hand, Perl only hasa small setof intrinsic functions
covering the most frequently used functionalities. Other functionalities are delegated to
modules which are only installed and invoked asneeded. As | will intr oduce shortly and in
Appendix A, the Comprehensive Perl Archive Network (CPAN) contains a comprehensive
and well-or ganized listing of ready-made Perl modules that you can install and use very
easily.

2.2.3 Javal/JSP

Sun Micr osystemsdeveloped the Javalanguage and intended to target it asa general purpose
programming language. It is from the ground up object-oriented and platform independent.
Functionalities are accessedhrough the JavaAPI, consisting of hierarchies of classessimilar
to that of Perl. JavaServer Pages(JSP)is a Web scripting environment similar to ASP except
with a Javasyntax. Similar to C/C++, the Javasyntax is very structured and thus are not as
exible asscripting languageslike Perl. Also, Javaitself is not just an interpr eter, it is a virtual

machine over which programmers are totally abstracted from the underlying operating
system platforms, which allows the Java APl to be implemented on top of this platform-

independent layer. For those who have programmed in Javabefore, you will probably nd

that the JavaVirtual Machine takesrather long time to load, especially on lower-end systems
with limited computational power. This defers the possibility of widespr ead deployment of
Javaprograms.

While Perl is not strictly a general-purpose programming language like Java, | found it
dif cult to compare Perl and Javabecauseof their different natures. However, if con ned
to the purpose of Web server scripting, | generally prefer Perl to JSPfor its exibility and
lightweight performance. Despite this, | feel that Javais a language that is feature-rich and if
time allows, you are strongly encouragedto nd out more about this stupendous language,
which is expecting increasing attention in mobile and embedded devices because of its
platform independence.

2.24 ASP

Active Server Pages(ASP)is only available on Windows NT-seriesoperating systemswhere
Internet Information Services(llS) is installed (although alternative implementations of ASP
on other system architectures exist, e.g. Sun Chili'Soft ASP, which is a commercial product
that runs on Unix, but generally considered not very stable).

Running on a Windows Web server, ASP can impose a tighter integration with Microsoft
technologies, so that the use of, say, ActiveX data objects (ADO) for databaseaccesscan be
made a lot easier However, IIS is especially vulnerable to remote attacks when operated
as a Web server. Numer ous service packs have beenreleasedto patch the security holes in
IIS and Windows NT. However, new holes are still being discovered from time to time that
makes the deployment of Windows NT/IIS asthe Web server of choice not very favourable.
On the other hand, the use of Apache, the renowned Web server for Unix and now for other
operating systems as well, has far less security concernsand are less susceptible to remote
attacks. Apache also has the largest installation baseamong all Web server software, taking
up more than 60% of the market share.

10 Chapter 2 Getting Started

2.3 What do | need to learn Perl?

You don't need to pay a penny to learn and use Perl. Basically, a text editor that handles
text-only les and aworking installation of the Perl interpr eter are all that you will need.

EF) #RERE THE(D ERNss BEE(E) W SEEhEEE ()
QEDE 9@ 48 ? A

1# This ver:
2 #

4 package finalyzer;

5 sub new

s-»i'filename’i;

nt WHIT
nt WORD

Figure2.1: Editing aPerlsource le with GVIM, running on GNU/Linux

Under Microsoft Windows, Notepad meets the minimum requirement. However, a whole
page of codein black is not visually attractive in terms of readability. Sometext editors have
the feature of syntax highlighting , where different parts of a statement are displayed in
different colours. Good colouring makes the source les more pleasurable to look at (such
colouring is used for display only and will not be savedto le). However, avoid using word
processorslike Microsoft Word or Wordpad which add proprietary control codes on le
save by default. The Perl interpr eter does not recognize these special formats. If you have
to use these word processors,ensure that your les are saved as plain text ASCII format so
that the Perl interpr eter can accessthem. AnyEdit and UltraEdit are nice text editors on the
Windows platform. Under Unix or Linux, emacsor vim are stupendous text editors featuring
syntax highlighting pro les for most programming languageswith alot of powerful features.
Fig. 2.1shows a screenshotof a Perl source le edited with GVIM, a port of vim that runs on
Windows, X-Windows with the GTK library on Unix/Linux and many other platforms. This
is my favourite text editor and is used to construct my entire Web site.

If you are using one of the mainstream operating systems, the perl interpreter can be
downloaded from the download section of perl.com. perl.com is the of cial Web site for the
Perl language and you can nd the download links to all available interpr eter versions there.
Choose the version which matches your operating system. When you go to the download
page you will seetwo versions, namely the stable production releaseand the experimental
developer's release. The stable releaseis the version | recommend to new users, because
the developer's version is for more advanced usersto betatest the new version. It may still

http://www.anyedit.org
http://www.ultraedit.com
http://www.perl.com

2.4 Make Good Use of Online Resources 11

contain bugs and may give incorrect results. The les you have to download are under the
heading “binary distribution”. Do not download the source code distribution unless you
know exactly how to compile and install them. In caseyou are using an operating system
that is not listed, a good placeto nd a binary distribution for your operating system is the
CPAN, located at here, which contains a fairly comprehensivelist of platforms on which Perl
canrun.

For Windows users, most probably you should download the Activestate distribution of Perl.
It is very easyto install, with some extra tools bundled in the packagefor easyinstallation of
new modules. For GNU/Linux users, most probably Perl is already installed or available as
RPM (Redhat PackageManager) or DEB (Debian packages)formats. As many Linux distri-
butions already have builtin support for RPM packages,you may look at your installation
discs and you are likely to nd some RPM binaries for Perl if it is not yet installed. For other
Unix systems,you may nd tarballs containing the Perl binaries. If no binaries are available
for your system, you can still build from sourcesby downloading the source distribution

from the CPAN. To checkif perl is installed on your system, simply open aterminal and type
perl -v. If Perlis installed you will have the version information of Perl installed displayed
on screen. If error messagesappear, you will needto install it.

Installation of Perl will not be covered in this tutorial, and you should look for the installation
help documents for details.

NOTES

BecausePerl is an open source softwar e, which releaseshe source codeto the public
for free,you will seethe source code distribution listed. Yet for usual programming
purposes there is no need to download the source les unless binary distributions
are not available for your system.

An exception is if you are using one of the operating systemsin the Unix family
(including Linux). There are already compilation tools in these operating systems
and you can manually compile Perl from sourcesand install it afterwar ds. However,
note that compilation can be a very time-consuming process, depending on the
performance of your system. If you are using Linux, binary distributions in the
form of RPM or DEB packagescan beinstalled very easily. Only if you cannot nd a
binary distribution for your platform that you are encouraged to install from source
package.

2.4 Make Good Use of Online Resources

You may needto seekreferencewhile you are learning the language. As a new user you are
not recommended to start learning Perl by reading the man-pagesor the reference manuals.
They are written in strict technical parlance that beginners, especially those who do not
have prior programming experience or basic knowledge in Computer Science,would nd

reading them real headaches.You are recommended to follow this tutorial (or other tutorials
or books) to acquire some basic knowledge rst, and thesereferencedocuments will become
very useful for ambitious learners to know more about the language, or when you have
doubt on a particular subject you may be able to nd the answers inside. In this course

http://www.cpan.org
http://www.perl.com/CPAN-local/ports/index.html
http://www.activestate.com/Products/ActivePerl

12 Chapter 2 Getting Started

I will try to cover some important terms used in the reference materials to facilitate your
understanding of the text. For the time being, you may want to have several books on Perl for
cross-referencing purposes. | have tried to write this tutorial in a way that beginners should
nd it easyto follow, yet you may need to consult these books if you have any points that
you don't understand fully .

Although you are not advised to read the of cial referencedocuments too early, in some later
parts | may refer you to read a certain manpage. A manpage, on Unix/Linux systems,is a
help document on a particular aspect. To read a particular manpage, (bring up a terminal
if you are in X-Windows) type manfollowed by the name of the manpage, for example, man
perlvar , the perlvar manpage will be displayed. For other platforms, manpagesmay usually
comein the format of HTML les. Consult the documentation of your distribution for details.
There is an online version of the Perl of cial documentation at perldoc.com. It contains the
Perl man pagesaswell asdocumentation of the modules shipped with Perl. In fact, there are
now several manpagesthat are targeted at novice programmers. For instance, the perlintr o
manpage is a brief introduction to the fundamental aspectsof the Perl language that you
should master fully in order to claim yourself a Perl programmer.

You are also reminded of the vast varieties of Perl resourcesonline. There are many Perl
newsgroups on the USENET and mailing lists devoted to Perl. Your questions may be readily
answered by expert Perl programmers there. Of course, try to look for a solution from all the
resourcesyou can nd including the FAQs before you post! Otherwise, your question may
simply beignored. Perl Monks is also a very useful resourceto Perl users.

dmoz.org contains a nice selection of Perl-related sites. You can nd a similar list of entries
on Yahoo!.

Google is the best search engine for programmers. You can usually get very accurate search
results that deliver what you need. For example, by specifying the terms “Perl CGl.pm
example”, you will get screenfuls of links to examples demonstrating the various uses of
the CGl.pm module. As you will seelater, this module is the central powerhouse allowing
you to handle most operations involving CGI programming with unparalleled ease. For
materials not covered in this tutorial or other books, a search phrase can be constructed in
a similar manner that allows you to nd documentation and solutions to your questions at
your ngertips.

Of course, don't forget to experiment yourselfl CPAN, the Comprehensive Perl Archive
Network is anice place whereyou candownload alot of useful modules contributed by other
Perl programmers. By using these modules you can enforce code reuse, rather than always
inventing code from scratch again. There are so many modules on the CPAN available that
you would be surprised at how active the Perl community has been. Some CPAN modules
are well-documented, some are not. You may needto try to t the bits and piecestogether
and seeif it works. This requiresmuch time and effort, but you can learn quite alot from this
process.

2.5 The Traditional “Hello World” Program

Traditionally , the rst example most book authors useto intr oduce a programming language
is what is customarily called a “Hello World” program. The action of this program is ex-

http://www.perldoc.com
http://www.perldoc.com/perl5.8.0/pod/perlintro.html
http://www.perlmonks.org
http://dmoz.org/Computers/Programming/Languages/Perl
http://www.yahoo.com
http://www.google.com
http://www.cpan.org

g b~ wN PP

2.5 The Traditional “Hello World” Program 13

tremely simple — simply displays the text “Hello World” to the screenand does nothing else.
For all examplesin this tutorial where source code is given in the text, you are encouraged
to type them in yourself instead of executing the examples downloaded from my Web site,
since it is more likely that by doing so you would understand the materials more quickly.
Let's write a“Hello World” program to seethe procedureswe take to develop aPerl program.

If you are under Windows, it is a good practice to check if the path to the Perl interpr eter
has been added to the path list in C:nAutoexec.bat. In this way, you can changeto the path
containing your Perl source les and canrun the interpr eter without specifying its path. The
setup program of your distribution would probably have done it for you. If it hasn't, append
the path to the end of the list and end it with a semicolon. A typical path list looks like this,
the last one in this example is the path to the perl interpr eter (note that your path may be
dif ferent):

SET PATH = C \WI NDOAS; C: \WI NDOWE\ COWAND; C:\ W NDOWB\ SYSTEM C: \P ERL\ BI N;

NOTES

The use of Autoexec.bat is now obsolete starting from Windows 2000. Setting of en-
vironment variables should be carried out by right-clicking on the “My Computer”
icon, and then choosethe “Pr operties” option. Now selectthe “Advanced” tab and
then click on the “Envir onment Variables” button at the bottom. To make the perl
interpr eter available to all users on the system, the path should be appended to the
PATH variable in the “System variables” section. If you modify the PATH variable
in the “User variables” section, only the user concerned (presumably you) will be
affected.

For Unix/Linux, checkyour PATH variable and seeif the directory containing the perl exe-
cutable is present(usually /usr/bin). You canlook at the list of paths by typing echo $PATH
on the command line (be careful of exact capitalization!). Look for “/usr/bin” in the colon-
separatedvalues. On somesystems,the path to perl would be*“/usr/local/bin” or something
else, so please check carefully. You may need to modify the startup login scripts like .login,
.bashrc, .pro le etc. sothat you don't need to set PATH or specify the full path to perl every
time if perl is installed at some weird locations. A convenient workar ound is to create a
symbolic link in adirectory included in PATH, e.g./usr/bin that points to the perl executable.

EXAMPLE 2.1

#[usrlb in/perl -w
Exanple 2.1 - Hello Wrld

print the text to the screen
print "Hello, Wrld!\n";
Here we outline the stepsfor creating this simple program on Windows and Linux.

Microsoft Windows

14

Chapter 2 Getting Started

Unix

Open Notepad (or any other text editor you choose)and type in the source code shown
above. Note that the line numbers on the left are for identi cation of lines only and do
NOT type them into the text editor. Pleasemake sure word wrap is disabled.

Savethe le ashello.pl. A few text editors, like Notepad, usually append the “.txt”
extension to the lename when saving. You may put a pair of double quotes around
the lename to circumvent this behaviour. Also, if you are using Windows 2000 or
above and would like to use Notepad, pleaseensurethat the le encoding is setto ANSI
instead of Unicode.

Bring up an MS-DOS prompt window and change to the directory containing your
newly created le. Say if you have saved to "C:nperl_examples”, then type cd
C:nperl _examples and pressEnter. Put a pair of double quotes around the path if any
directories in the path contains spaces(In fact | don't recommend placing Perl source
les in directorieswith namescontaining spaces.It only complicates matters).

Executethe program by typing perl -w hello.pl and pressenter.

or GNU/Linux

Open any text editor (vim, emacs, pico, kedit) and type in the source code shown
above. Note that the line numbers on the left are for identi cation only and do NOT
type them into the text editor. Pleasemake sure word wrap is disabled.

Savethe le ashello.pl. Note that the path on line 1 hasto match the path to perl on
your system. Also, no spacesshould precedethe “#' character and no empty lines are
allowed before this special line (traditionally known asthe ‘shebang' line).

If you are in X-Windows environment, bring up a terminal window . Change to the
dir ectory containing the newly created le using the cd command.

In order to run it without specifying the perl interpr eter, setthe le accessprivilege
to user executable by using the chmod command. The command should be chmod u+x
hello.pl and pressEnter.

Executethe program by typing ./hello.pl and then pressEnter.

NOTES

Even if you are using Unix/Linux, it is not absolutely needed to chmod your perl
source les. In fact, you only need to make those source les executable if you
want them to be directly invoked without specifying the name of the interpr eter
(i.e. perl). In this case,the shell will look at the rst line of the le to determine
which interpr eter is used, so the #!/usr/bin/perl line must exist. Otherwise, the
le cannot be executed. If you only intend to executethe le in Unix or Linux using
perl -w filename.pl ,then lename.pl need not be given an executable permission.
As you will learn later, you may have some Perl source les that are not invoked
dir ectly. Instead, they are being sourced from another source le and don't need to
be executable themselves. For these les, you don't need to chmod them and the
default permission is adequate.

2.6 How A Perl Program Is Executed 15

If thereis not any errors, you should seethe words “Hello, World!” under the command
prompt. For such asimple program it is not easyto make mistakes. If error messagesappear,
check carefully if you have left out anything, becausea trivial mistake is suf cient to end
up with lots of error messagesif you are not careful. Also check if you are using the latest
stable version of Perl 5. All examplesin this tutorial have beentested with Perl 5.8.0Win32
(ActiveState distribution) and Perl 5.8.0 under GNU/Linux, but it should work for other
distributions or versions aswell unless otherwise noted.

The -w is an example of a switch. You specify a switch to enable a particular interpr eter
feature. -w is specied so that warning messagesif any are displayed on screen. Under no
circumstancesshould this switch be omitted becauseit is important, especially asa beginner,
to ensure that the code written is correct. It also helps catch some mistakes that are otherwise
dif cult to capture.

The core of the program is on line 5. It is this statement that prints the text delimited by
guotation marks to the screen (actually in a more accurate parlance the text is sent to the
standard output , which is the screenby default).

Notice the strange nn at the end? It is one of the escapecharacters which would be described
later in more detail. nn is used to insert a line break. Therefore, you seea blank line before
returning to the command prompt.

Lines precededwith a # (sharp) sign are comments and are ignored by the perl interpr eter.
A comment does not need to be on its own line, it can be put at the end of a line aswell. In
that case,the remaining of the line (starting from # and until the end of the line) is regarded
asa comment. Comments are helpful for you or other programmers who read your codeto
understand the purpose of the statement(s). You can put anything you like as comments.
Line 1 is also a comment asit is of interest to the shell only instead of the perl interpr eter
itself. The switch -w here is the same asthat speci ed under the command line. This is read
together with the path to perl to enablethe display of warnings.

A Perl script consistsof statements, and eachstatementis terminated with a semicolon (;). A
statementis rather like a sentencein human languages which carries a certain meaning. For
computer languages a statementis an instruction to be performed.

2.6 How A Perl Program Is Executed

Perl programs are distributed in source les. From the instance you invoke the perl inter-
preter to executea script, a number of stepswere involved before the program is executed.

Preprocessing An optional preprocessingstagetransforms the source le to the nal form.
This tutorial does not cover source preprocessing. For details please consult the perl lter
manpage.

Tokenizing The source le is broken down into tokens. This processis called tokenization
(or lexical analysis). Whitespaces are removed. Token is the basic unit that makes up a
statement. By tokenizing the input parsing is becoming easierbecauseall further processing

16 Chapter 2 Getting Started

are carried out on tokens, independent of whitespace.

Parsing & Optimization (Compilation) Parsing involves checks to ensure the program
being executed conform to the language speci cation and builds a parse tree internally
which describesthe program in terms of microoperations internal to Perl (opcode). Some
optimizations to the parsetreeare performed afterwards.

While in-depth understanding of any of these processesis not essential to practical Perl
programming, the compilation phasewill be mentioned in some later chapters that | believe
it is agood ideato brie y introduce the phasesinvolved beforehand.

GOOD PROGRAMMING PRACTICES

Comments (Part I)

Comments are meant for human reader to understand the source code without the
need of running the program oncein your brain. This increasesboth the readability
and maintainability of your source code. Many programmers are lazy to insert
comments throughout the code. But it is very likely when you look at a piece of
code wrote earlier you may not understand it anymore as it is very complicated
without any commentsin it.

Therefore, you should include comments in appropriate places. Usually for a single
block of code performing one particular function we will place a comment brie y

describing what this code block does. You may also want to place a comment on
a particular line if the meaning of the line is not immediately obvious. Of course,
don't deluge your source code with comments. For example, in the source code
of the "Hello World' program | placed a comment for the print statement. It is
super uous, in fact, as the meaning of this statement is pretty obvious. But |
included it here becausethis is your rst Perl function learnt. As you proceed,
more constructive comments and less super uous comments will be found in the
examples.

As Perl programs have to be distributed in source code (although an experimental
tool exists that allows Perl programs to be distributed in standalone bytecode
format), | have seensome programmers deter people from reading the source code
by using some script to remove all the newlines and garble variable namesin order
to make it nearly impossible to understand. But such practices actually violate the
principles of open sourcedevelopment, and | am in opposition to such practices.

2.7 Literals

All computer programs have to handle data. In every program there are certain kinds of data
that do not change with time. For example, consider a very much simplied CGI script that
checksif the password input by the user matches the system. How would you implement
it? It seemsthe simplest method would be to have the correct password specied in the
script, and after the user has entered the password and hit the “Submit” button, compare it
against the password input by the user. The standard password speci ed in this script does

2.7 Literals 17

not changeduring the course of execution of the script. This is an example of aliteral . Other
terms that are also used are invariants and constants. In the previous Hello World example,
the text “Hello, World!nn” on Line 5 is also a literal (This piece of data cannot be changed
during the time you are running the program).

Literals can have a number of forms, just becausewe can have data of different forms. In Perl
we canroughly differentiate numbers and strings.

2.7.1 Numbers

There are several classesof numbers: integers and decimals (known as oating-point
numbers in computer literatur e).

In Perl, integers can be expressedin decimal (base 10), hexadecimal (base 16) or octal (base
8) notation. Octal numbers are preceded by a 0 (zero), e.g. 023 is equivalent to 199 (the
subscript 10 denotes representationin base-10,i.e. decimal form); hexadecimal numbers are
precededby 0x (zero x), e.g. Oxfe is equivalent to 254,o. For hexadecimal digits A - F, it does
not matter whether you specify them in lowercaseor uppercase. That is, Oxfe is the sameas
OxFE.

Integers cannot be delimited with commas or spaceslike 10,203,469r 20 300. However,
Perl provides a nice workar ound as a substitute. An example is 4.976.297.305. This is just
a facility to make large numbers easierto read by programmers, and writing 4976297305s
entirely correctin Perl.

Decimals are those carrying decimal points. If the integral portion is 0, the integral portion
is optional, i.e. -0.6 or -.6 work equally ne. Exponents (base 10) can also be speci ed by
appending the letter “e” and the exponent to the real number portion. e.g. 2e3 is equivalent
to 2 x 10° = 2000.

2.7.2 Strings

A string is a sequenceof charactersenclosed (delimited) by either double quotes (”) or single
quotes (). They differ in variable interpolation and in the way escapecharactersare handled.
The text “Hello, World! nn” in the hello world example is a string literal, delimited by double
quotes.

We will defer variable interpolation until we come to variables. Escapesequencesexist in
many programming languages. Every escapesequencehas a function associated with it.
Escapesequencesare usually put inside double-quoted strings. Table 2.1 summarizes the
most important escapesequencesused in Perl.

These escapesequencesare used in double-quoted strings. Another situation where escape
sequenceshave to be used is for character escaping. What does that mean? Consider you
would like to use double quotes in a double-quoted string. For example you would like to
print this English statementinstead of the “Hello World” phrasein Example 2.1:

Howdy says,"Give me $500”.

18

Chapter 2 Getting Started

Escape

Sequence Function

nn

nr

nt

nb

na

nxnn

nonn

ncX

nu

nl

nu

nL

nQ

nE

Newline
Startsa newline

Carriage Return
Returns to the starting point of the line

Tab

Analogous to striking the Tab key on your keyboard; How-
ever, using tab to make formatter output doesnot always gen-
erate the format expected.

Backspace
Analogous to the Backspacekey; erasesthe last character

Bell
Createsa beep sound from the system buzzer (or sound card)

ASCII characterusing hexadecimal notation
Outputs the character which corresponds to the specied
ASCII index (eachn is a hexadecimal digit)

ASCII character using octal notation
Outputs the character which corresponds to the specied
ASCII index (eachn is an octal digit)

Control Character
For example, ncC is equivalent to pressing Ctrl-C on your key-
board

Next letter uppercase
The letter immediately following nu is converted to uppercase.
For example, nuemail is equivalent to Email

Next letter lower case
The letter immediately following nl is converted to lower case.
For example, nlEmail is equivalent to email

All subsequentletters uppercase
All the letters immediately following nU are converted to up-
percaseuntil nEis reached

All subsequentletters lower case
All the letters immediately following nL are converted to low-
ercaseuntil nEis reached

Disables pattern matching until nE
This would be covered in the “Regular Expressions” chapter.

Ends nU, nL, nQ
Terminates the effect of nU, nL or nQ.

Table2.1: Themostcommonlyusedescapeharactersn Perl

2.8 Introduction to Data Structures 19

That is, you try to print this phrase by:

print "Howdy says, "Give me $500"";

If you executethis program, you will getinto trouble, because’ is used to mark the beginning
and the end of the string literal itself. Perl locatesthe end of the string by searching forwar d
until the second double quote is found. If the literal contains double quotes itself, Perl will
not know where the string literal terminates. In the example above, Perl will think the string
ends after “Howdy says,”. Also, after you have learned variable interpolation in the next
chapter you will realize that the symbol $ is used for variable substitution. You have to
tell Perl explicitly you would like to use the symbol as is instead of performing variable
substitution. To get around this problem, just place the n character before the two symbols
concerned, and this is what we mean to “escape” a character. So, the correct way to print
this statement using double quotes is:

print "Howdy says, \"Give me \$500\".";

However, wise Perl programmers will not do this, as the backslashes make the whole
expressionugly to look at. If we chooseto use single quotes instead, we don't even have to
escapeanything:

print 'Howdy says, "Give me $500".";

Single-quoted string does not support variable substitution, so the $ need not be escaped.
Also, becausethe symbol ” does not carry any signi cance in the string, it does not need to
be escapedaswell. There are only two charactersthat need to be escapedin single-quoted
strings, namely ' and n. For double-quoted strings, a number of charactershave to be escaped,
and it would becomeclearasyou work through the chaptersin this tutorial.

Empty strings are denoted by “” or ™, that is, two quotes with nothing in between.

2.8 Introduction to Data Structures

Every programming language has certain kinds of data structure builtin. A data structure
can be thought of asavirtual container residing in the memory in which data is stored. Each
data structure is associatedwith a data type specifying the type of data permitted in the data
structure. A data type is important in programming languages becausedata of different
types are likely to be treated differently. For example, numbers are sorted by numerical
value; while strings are sorted in alphabetical order. Many programming languages, like
C++, Javaand Visual Basic, have a large number of data types, e.g. integer, double, string,
boolean ... just to name a few. They require declaration of a data type when a data structure
is created, and this data type cannot be changed afterwards. There are both advantages and
disadvantagesto this approach. As dif ferent data types occupy dif ferent amount of storagein
the memory, the underlying machine actually requiressome type information to convert the
high-level programming constructs into assemblyinstructions in the compilation stage.Also,
by having the data type xed there are lessambiguities asto how the data is to be handled.
The most obvious disadvantage, of course, is that explicit data conversion is necessaryin

20 Chapter 2 Getting Started

such programming languages.

As of Perl 5, Perl of cially differentiates only two types of data: scalar data and list data.
Mor eover, Perl does not enforce strict type-checking, instead, it is loosely-typed. This may
changein Perl 6, but you will not seeit in the near futur e.

Scalar data representsa piece of data. All literals are scalar data. Variables are also scalar
data. As the underlying machine requires explicit declaration of data types, Perl needsto
convert the data between different data types as needed in the underlying implementation,
while a Perl programmer can be oblivious to such data conversion. In the next chapter you
would seeexample codein practice.

Another type is list data. List data is an aggregation of scalardata. Arrays and hashesbelong
to this type. While you may not have a clear pictur e of how list data look like at this point,
you would have a clear idea after reading the next chapter.

There are three basic data structuresprovided with Perl, namely scalar variables, arrays and
associative arrays (hashes). | am going to give an intr oduction to the three types of data
structuresat this point, and in the next chapter you would seethe functions and operations
associatedwith thesedata structures.

A scalarvariable , or simply avariable, is a named entity representing a piece of scalardata of
which the content canbe modi ed throughout its lifetime. What doesthis mean? A variable
is conceptually like a virtual basket, and only one objectis allowed in it at any one time. If
at some time you would like to place something elsein the basket, you have to replace the
existing object with a new one, and the existing object is discarded. In Perl a variable can
store a piece of string or number (or a reference, which we haven't come to yet). Unlike
other programming languages, Perl gives you the exibility that at one time you may store a
number and at other times you may store a string in the samevariable, however, it is a good
practice to always store data of a particular type at any time in the same variable to avoid
confusion.

Becausethe value of avariable canbe modi ed at any point, and there can be many variables
that are concurrently in use at a time, we have to specify which one to address. Therefore,
variables are named, and on the other hand literals are unnamed. This hame is known asan
identi er . By default, all variables are global, that is, after the variable is rst used in the
script, it can be referred to at any time, anywhere until the script terminates. However, it is a
good practice not to useglobal variables excessively Instead, most variables are actually used
for temporary storageonly and can be restricted to be valid for alimited time. This concerns
the lifetime of avariable, and in turn the idea of scope. This would be discussedin Chapter 5.

Sometimeswe are dealing with a set of related data. Instead of storing them separately in
variables, we may store them aslist data, which is a collection of scalar data sharing a single
identi er (name). Arrays and hashesare two types of list data.

An array is a named entity representing a list of scalar data, with each item assigned an
index. In an array, the integral index (or subscript) uniquely identi es eachitem in the array.
The rst item hasindex 0, the one afterwards hasindex 1, and so on. Eachitem in an array
is a piece of scalardata, and, therefore, (in Perl only) numbers aswell asstrings may coexist
in the array. An array can be empty, that is, containing no elements (called a null array). A
representation of an example array containing some data is shown below, the column on the

2.8 Introduction to Data Structures 21

left is the index and the data is on the right:

Index Data
0 “Apple”
1 36
2 “Hello, World”
3 “School”

Table2.2: Contentsof asamplearrayin Perl

A hash is a special data structure. It is similar to an array except that the index is not an
integer, so the term “index” is not customarily used for hashes. Instead, a string is used
for indexing, and is known asa key. The key is conceptually like a tag which is attached
to the corresponding value. The key and the value forms a pair (key-value pair). Like an
array, the keys in a hash have to be distinct to distinguish a key-value pair from another.
Recall that ordering in arrays is determined by the indices of the items (becausewe can say
the rst item is the one which has subscript 0, the second item which has subscript 1, and
so on). However, in a hash no such ordering is present. You will seein the next chapter
that we may “sort” the hashesby keys or by values for presentation purposes. However,
this does not physically reorder the keys or the values in the hash. It merely rearranges
the key-value pairs for screenoutput or to be passedto another processfor further processing.

Hashes (or hash tables in Computer Science parlance) are especially useful in dictionary
programs. Assume that the program works asfollows. It requiresa user to enter an English
word into the text entry box that is to be searched in the dictionary database. Inside the
dictionary is actually a long list of key-value pairs, where the key is the word entry and
the value is an ID that the database uses internally to retrieve the corresponding record
(containing the explanations, pronunciation etc.). The term entered by the user is queried in
the dictionary . If the entry matchesany key, the corresponding ID is obtained and is used to
retrieve the record for the word speci ed; Otherwise, the term is not found and the program
returns an error. Hash table is an ef cient data structur e for data storage. A well-implemented
hash table requires only several comparisons to retrieve the value if the key is in the hash.
Mor e surprisingly , even if a given key does not exist in a hash, it is NOT necessaryto search
through all the keys in the hash before returning the key-not-found error. The reason for
this concernsthe principle behind hash tables and may be found in any textbooks on data
structuresand algorithms.

Severalentries of a possible hash table for the above dictionary program is shown below:

Key Value
“Boy” 342
“Apple” 165
“Kite” 1053

Table2.3: Contentsof a samplehashin Perl

In the next chapter, you will learn how to manipulate the data structuresdiscussed. You will
know how to construct an array, or remove items from it, etc.

22 Chapter 2 Getting Started

Chapter 3

Manipulation of Data Structures

3.1 Scalar Variables

| have qualitatively described how a scalar variable looks like in the previous chapter. Now
we are going to look at how you canuseit in your program.

You referto avariable by appending the identi er of the variable to the symbol $. For example,
avariable named LuckyNumber is written as$LuckyNumber .

3.1.1 Assignment

In Perl, it is not required to declare a variable before it is being used. However, before you
ever use a variable in your program you should give it a default value. To assign a value to
the variable we usethe assignment operator (=). For example, say my lucky number is 18,s0
| caninitialize the variable asfollows:

$LuckyNumber = 18;

This statement is interpr eted as follows: the value on the right hand side of the assign-
ment operator is assigned to the data structure on the left. In this case, 18 is assigned to
$LuckyNumber .

However, the right hand side of the assignment operator is not con ned to a literal only.
The right hand side of an assignment operator is actually treated as an expression. An
expression consists of a sequence of operations which evaluate to a value by means of
operators. For example, (6 + 5) * 2isan expressionconsisting of two operations (* denotes
multiplication). Evaluating an expression meansto deduce the result of the expression, by
evaluating each operand, and applying the operators in a certain order (subjectto operator
precedenceand associativity) to transform the expressioninto the value. The expressionin
this example evaluatesto the scalarvalue 22. You will learn more about operators in the next
chapter. Therefore, if we have another variable $Numwhich has the value of 8, executing the
statement $LuckyNumber = $Numcauses$Numto be evaluated on the right hand side, and thus
its value, that is 8, is assignedto $LuckyNumber . Sothis is essentially $LuckyNumber = 8.

Cascadedassignment is also possible, e.g. $a = $b = 8; First, 8 is assignedto $h, and then
the value of $b is assignedto $a. The net effect is that the two variables both have the value 8.

23

24 Chapter 3 Manipulation of Data Structures

In some other programming languages,to supply a default value before you rst use a vari-
able (initialization) is very important. For C/C++, you need to declare a variable before it
is used. This reservesmemory spacefor this variable. However, it is not required in C/C++
that a value needsto be assigned during variable declaration. A variable in this stateis de-
scribed asunde ned . Getting a value of an unde ned variable posesa very subtle source of
error (some garbage values are returned — that is, arbitrary value without any meaning) that
yields surprising results, and is very dif cult to debug. In Perl, if you use a variable that is
not initialized (for example, printing its value), the value undef (unde ned) is returned. This
is a special value that gives dif ferent values in dif ferent contexts. Contexts will be intr oduced
in the last section of this chapter and, simply put, it is 0in numeric context (i.e. if anumber is
requested),an empty string in string context (i.e. a string is requested)or FALSE in “Boolean”
context (i.e. when either TRUE or FALSE is requested). However, if you have specied the
-w switch, the interpr eter should have warned you on using uninitialized variables. The use
of uninitialized variables is not a good practice, and you have to ensure that all variables are
given avalue before being used.

As already discussed, you can store scalar data of different types in a variable during the
lifetime of the script, so you can now assign the string literal “eight” to $LuckyNumber . Perl
will just happily acceptit. Of course,you should try to avoid it, asdescribed in the previous
chapter.

NOTES

You may seethe terms Ivalue and rvalue in some other books or documentation.
An lvalue refersto any valid entities that can be placed on the left hand side of the
assignment operator, while an rvalue refersto any valid entities that can be placed
on the right hand side of the assignment operator. A list, an array or scalar variable
can be an Ivalue. Literals (scalarin sense)are not Ivalues. Different programming
languages have dif ferent Ivalues and rvalues.

For example, theseare Ivalues (of coursethey canbe rvalues aswell): $var
($var, @lst)
Theseare not:

46
("mystuff", "apple")

3.1.2 Nomenclature

| have forgotten to talk about how to choosean identi er for avariable (and arrays or hashes
alike). An identi er should start with aletter (A-Z, a-z) or underscore (). Subsequentletters
may be alphanumeric characters(A-Z, a-z,0-9)or an underscore (_). No spacesare allowed in
the middle of anidenti er . There is one more important point. Perlis at all timescase-sensitive
That means it differentiates lowercaseand uppercasecharacters. The print statement you
have seenin the Hello World example cannot be replaced by Print, PRINT or anything else.
Similarly, $var and $Var aretwo different variables. The last point to note is identi ers cannot
be longer than 255 characters (long identi ers are time-consuming to type and dif cult to

© 0O ~NO UL WDN P

e
N R O

3.1 ScalarVariables 25

interpr et — pleaseavoid them).

NOTES

If you read on, you will discover that Perl has many builtin prede ned variables
which do not follow such a nomenclature scheme.For example, $1 - $9 are reserved
for backreferencing in pattern matching (seethe chapter “Regular Expressions”), or
other more awkwar d looking variables like $, , $", $_ ... Justto name a few. Because
devoting a whole chapter to intr oduce them would be too boring, | will intr oduce
them as needed throughout the text. Alternatively , the perlvar manpage contains
descriptions to all Perl prede ned variables.

Another point to note is that the name of a variable, array or hash is formed by a symbol ($
for variable) and the identi er . Therefore, $Var, @Var and %Var can coexist. Although they
have the sameidenti er , they are still unigue namesbecausethe symbols are different. Also,
you may use “r eserved words” for the identi er , e.g. $print becausethe symbol before the
identi er tells Perl that this is a variable. There is thus no ambiguities.

3.1.3 Variable Substitution

It's time to talk about variable substitution . | have told you that single-quoted strings do
not allow variable substitution, while double-quoted strings can. Variable substitution means
that referencesto variables in a double-quoted string will be substituted by their values at the
time the statementis evaluated. Consider this example:

EXAMPLE 3.1

#![usrlb in/perl -w
Exanple 3.1 - A Cel sius->Fahrenheit Converter

Print the pronpt

print "\n Please enter a Celsius degree > ";
Chop off the trailing newine character
chonp($cel = <STDI N>);

$fah = ($cel * 1.8) + 32

print value using variable interpolation
print "The Fahrenheit equivalent of $cel degrees Celsius is $fah\n";

Line 7 looks awkwar d, but here we do two things, acceptuser input and removesthe trailing
newline character. You don't have to concernmuch about thesetwo things here, aswe would
describe them in more detail later on.

Line 9 calculatesthe Fahrenheit temperature, and when execution of the script reachesline
12, it seesthe two variables $cel and $fah . Then Perl replacesthem with the values the two
variables carry at that time, and the resulting string is output to the screen.

26 Chapter 3 Manipulation of Data Structures

There is one problem arising from variable substitution. What if we have some words im-
mediately following the variable, without even a space? Perl has provided a nice facility to
get around this situation. You may put a pair of curly bracketsaround the identier nameto
separateit from the aurrounding text, e.g.

print ~ "${Num}th Edition";

3.1.4 substr() — Extraction of Substrings

Frequently you have to extract a sequence of characters from a string. In other words,
you extract a substring from it. Perl provides you with the substr() function to extract a
substring, provided that you already know in advance whereto start extracting it.

The syntax of the substr() function is asfollows:

substr STRING, OFFSET
substr STRING, OFFSET, LENGTH
substr STRING, OFFSET, LENGTH, REPLACEMENT

As you can see,substr() can take 2-4 parameters depending on your needs. A parameter,
or an argument , servesto provide a function with a piece of data that is necessaryfor its
operation. STRING is the string from which extraction is performed. OFFSETis a zero-based
offset which indicates the position from which to start extraction. The rst character of any
string has an OFFSETO, and 1 for the second character etc. In Perl, OFFSETcan be negative,
which counts from the end. For example, the last character of the string can be represented
by the OFFSET-1. LENGTHs the number of charactersto extract. If it is not speci ed, it extracts
till the end of the string. The extracted substring is returned upon evaluation. Here are some
examples:

$string = "This is test.";
print substr($string, 5); # is test.
print substr($string, 5 2); # is

If REPLACEMENTs speci ed, the substring is replaced by the string obtained by evaluating
REPLACEMENTand the substring being replaced is returned. Alternatively , you may put
substr() on the left hand side of an assignment operator, and REPLACEMEN®nN the right. Here
is an example which replacesa substring of length 0 with the replacementstring “not a”, that
implies inserting it at position 8:

substr($string, 8, 0, "not a"); ## First method
substr($string, 8, 0) ="ot a " ## Second method
print $string; # This is not a test
3.1.5 length() — Length of String

You can nd out the length of a string by using the length() function. The only parameter
for the length() function is the string itself. It returns the number of charactersin the string.

3.2 Lists and Arrays 27

Scalarvariable is a very simple data structure. In the next section we are going to deal with
lists, arrays and hashesthat are a lot more interesting to play with.

3.2 Lists and Arrays

Arrays are named entities, lists are not. The relationship between alist and an array is very
much similar to that between a literal and a scalar variable. A list is merely an ordered set of
elements. An array is just like alist but with a name thus can be referencedthrough an array
variable. Studying the behaviour of lists allow usto progressnaturally into arrays and hashes
in subsequentsections.

3.2.1 Creating an Array

Eachitem in the list is called an element. To createalist, simply delimit (separate)the elements
with commas(,) and surround the list with a pair of parentheses.For example alist containing
the namesof some colours can be written as

("red", ‘"orange", "green", "blue")

An array can be created by assigning a list to an array variable. An array variable starts with
the symbol @(compare with the caseof $ for scalarvariables). Therefore, an array can be set
up containing the list above, e.g.

@colors = ("red", "orange", "green", "blue");

Alternatively , you may use the equivalent method of per-item assignment (to be discussed
shortly):

$colors[0] = "red";
$colors[1] = "orange";
$colors[2] = "green";
$colors[3] = "blue";

This array contains 4 elements. A null array is simply (). Lists can be nested, that is, a list
may contain other lists or array variables asan element. However, the embedded lists will be
expanded and merged with the container list. Any null lists or null arrays are removed. For
example, if

@unix = ("FreeBSD", "Linux");
@os = ("MacOS", ("Windows NT", "Windows ME"), @unix);
@osis expanded into

@s = ("MacCS", "Wndows NT", "Wndows ME", "FreeBSD', "Linux"),

In the following example, @result will becomeanull array. Note that null lists are ignored.

28 Chapter 3 Manipulation of Data Structures

@nullarray = ();
@result = (()l @nullarray);

A useful operator that worths mentioning here is the range operator (..). If you would like to
generatean array of consecutive integers this operator may come in handy, asyou no longer
have to use aloop to do it. Example:

@hundrednums = (101 .. 200);

However, the numbers must be in ascending order. If you would like to have an array of
consecutive integers in descending order, you may construct it in ascending order using the
range operator, and then reversethe position of the items using the reverse() function:

@hundrednums = reverse (101 .. 200);

3.2.2 Adding Elements

Weknow from the previous sectionthat if we place an array variable or asublist asan element
of alist, the array variable or the sublist would be expanded and merged with the parent list,
and in this operation the identity of the original array variables or sublists are lost. That
means, you can no longer tell from the resulting list if a particular element originates from a
sublist or an array variable. Therefore, it is natural to conclude that two arrays canbe merged
together by this operation:

@CombinedArray = (@Arrayl, @Array2);

The resulting array contains all the elements in @Arrayl, followed by that of @Array2. To
append a scalarelement to the end of an array, you canwrite, for example,

@MyArray = (@MyArray, $NewElement);

We can also append a list of scalar data to the end of an array by using the push() function.
The syntax of the push() function is

push ARRAY, LIST;

where ARRAY is the array to which the list data are to be appended. LIST is alist specifying
the elements to be appended to ARRAY. The mechanism of the push function is not much
different from the interpolation of lists above, and | am more accustomedto the previous one
than using the push function, becauseit appears more intuitive to look at.

push is a function. A function returns some values (not necessaryscalar, can be list data as

well for certain functions) after the operation is nished. For this function, the number of
elements after element addition is returned. Consider the example below:

SNumElements = push(@MyArray, @list);

00 ~NO O WN P

3.2 Lists and Arrays 29

Note that | have added the parenthesesaround @MyArray and @list , which are the param-
eters of the function (also known as arguments). Parameters are additional information a
function needsto perform its job. The parentheseshere are not actually necessarybut | added
them here to make it obvious the parameters of the function. The return value is assigned
to $NumElements . In the next chapter, you will learn operator precedence which describesin
detail when and where you should add parentheses. For the time being, stick to the way |
have beendoing and it would be ne.

On the other hand, this operation inserts the element at the beginning of the array:

@MyArray = ($NewElement, @MyArray);

unshift is afunction that inserts alist at the beginning of an array, and returns the number of
elements after the operation. The syntax is

unshift ~ ARRAY, LIST;

where ARRAY is the array to which elementsare added, and LIST is the list that is inserted at
the beginning of ARRAY. Consider the following example:

EXAMPLE 3.2 Demonstrating unshift()

#! [usrlb inlperl -w

@lphal = ("a", "b", "c");
@lpha2 = ("d", "e", "f");

unshift @l pha2, @l phal;
$, =" "; # Prints a space in between el enents
print @l pha2;

Again, disregard the line numbers that are for illustration only. Note that the ordering of the
items of @alphal is preservedin @alpha2. What is worth noting is on line 7. We assigna space
to an odd-looking variable, but what's that? This is an example of Perl prede ned variables,
and $, is known asthe Output Field Separator. Without line 7, you would most likely get
an output like “abcdef” becauseby default this variable is an empty string. The output eld
separator is the string that is to be printed between two elementsin a print operation. You
may assignany valid string literals to this variable. | am putting a spacein between elements
to make them easierto read.

3.2.3 Getting the number of Elements in an Array

There are two ways in which you could obtain the number of elements stored in an array.

The rst method is to employ the concept of context. By evaluating an array in scalar context,
we canobtain the number of elementsin an array. You may not understand what this is for the
time being, but we will return to this example when we cometo contexts later in this chapter.
In the following example, the number of elementsin @colours is asssignedto $numElements :

30 Chapter 3 Manipulation of Data Structures

$numElements = @colours;

The second method is alittle bit clumsy to explain. In Perl, you can nd out the subscript of
the last item of an array by replacing the symbol @with $#. For example, the subscript of the
last item in @Array is given by $#Array .

For historical reasons, Perl provides a facility for usersto specify the subscript of the rst

element of an array. This is specied by assigning an integer to the prede ned variable $[.
This is 0 by default, and that's why | said subscripts start from 0. However, some people
may be accustomedto using 1 asthe starting index (especially those who have used some
“antique” programming languages). This value is not necessarily0 or 1. You may set other
values aswell. However, you cannot assignvalues to this variable more than once. Although

Perl provides this facility, you are advised not to use it becauseof potential confusions that
may arise, especially if your project consistsof a number of les.

With both the start index and the index of the last element, we can get the number of elements
by using the formula:

Number of elements= Last Index - Starting Index + 1
=$#Array -9 +1

As the start index is 0 by default (that is, if you don't specify otherwise), you may assumethat
the number of elements of @Array is given by

$#Array + 1

3.2.4 Accessing Elements in an Array

After we have added items to an array or list, we can accessany of its elements by using the
subscript operator ([]). For example, if we would like to retrieve the thir d element (remember
that subscripts count from 0) from @colours and return the value to $col3 , we canwrite

$col3 = $colours[2];

Note that the symbol is $ instead of @on the right hand side of the assignment operator. In
Perl, becausethe value returned (i.e. an element of an array or a list) is a scalar value, the
symbol $is used. Though looking awkwar d, you cande nitely usethe subscript operator on
alist, like this:

$col3 = ("red", ‘"orange", "green", "blue")[2];
Obviously, using the subscript operator in this way is not really useful.

What about specifying a negative subscript? Negative subscripts count backwards, from the
last element of the array. The last element hasthe subscript -1, and the next-to-last element has
the subscript -2. Therefore, the rst element of the array @array has the subscript -@colours
(due to scalar context). Normally , negative subscripts are used as a convenience method to
retrieve the last element of an array. At least, @array[-1] is de nitely easierto understand
than @array[$#array]

~NOo o~ wDN PR

~NOo o b~ wDNBRE

3.2 Lists and Arrays 31

An array slice is a subsetof elementsfrom all the elementsin an array. The subscript operator
is not con ned to one subscript only. You may specify a list of subscripts using the comma
operator (,) and the range operator (..). You usethe range operator to specify subscripts (must
be integral) in a given range, and the comma operator to specify eachsubscript individually .
Nothing will stop you from using both operators together, asin the following example:

EXAMPLE 3.3 Array Slices

#[usrlb in/perl -w

@lpha = (a' .. 'z");
@lice = @lpha[4, 10 .. 15];
$, =" "

print @lice;

In this example, the array slice @slice contains the 5 element, and 6 elements starting from
the 11 element of @alpha. The resulting output is thus “e k | m n o p”. Note that becausethe
array slice contains a list of values, the symbol of @alpha is @on line 4.

We can, of course, modify the value of any elementin an array. To do this, just assigna scalar

value to the corresponding array element. Similar is the casefor slice assignment, in which a
list of scalardata is assignedasal list. For example:

$colours[2] = "violet";

The followings are identical

@colours[2,4] = ("violet", "blue™);
$colours[2] = "violet"; $colours[4] = "plue";
@colours[4,2] = ("blue", "violet");

If you specify a subscript that is larger than $#array , the size of the array shall grow in order
to accommodatethe newly added element. In this example, because@numscontains originally
3 elements,assigning a value to the 5! elementleavesa“gap” at the 4" element, not assigned
any values. The value of this element is undef .

EXAMPLE 3.4 Array Expansion

#! [usrib inlperl -w

@uns = (3, 4, 5);
$nuns[4] = 7; # (3, 4, 5 undef, 7) expected

$, - Il\n II;
print @wuns;

To show that there is an empty gap at the 4" element, the output list separator is setto nn.
Soyou would seealine like “Use of uninitialized value at eg0304.plline 6” between 5 and 7
in the output if warnings are enabled. That's becauseretrieving the value of an uninitialized
value producesthis Perl warning.

32 Chapter 3 Manipulation of Data Structures

3.2.5 Removing Elements

We can usethe pop function to remove the last element of an array. It alsoreturns the value of
the item being removed. Syntax:

pop ARRAY;

In this example, the last item of @MyArray is removed and its value is assignedto $retval

$retval = pop(@MyArray):

On the other hand, the shift function removesthe rst element of the array, sothat the size of
the array is reduced by 1 and the elementimmediately after the item being removed becomes
the rst element of the array. It also returns the value of the item being removed. Syntax:

shift ~ ARRAY;

If ARRAY is empty, undef is returned.

3.2.6 splice() :the Versatile Function

Thereis a generalized function for adding and removing elements from an array. The splice
function is so general that it cando what push, pop, shift and unshift does. The syntax is:

splice ARRAY, OFFSET[, LENGTH[, LIST] ;

In this tutorial, the parts in slanted font denote optional parameters. These parameters are
optional in the sensethat in some situations they are optional; but not in other situations. |
use|] to label that a parameter is optional. Note that [LIST] is placed within another optional
parameter LENGTH. This means that if you have to specify the parameter LIST, you must
also specify LENGTH; but not vice versa. If you specify the parameter LENGTH, you may or
may not supply the parameter LIST.

In general, this function removes LENGTH elements starting from the element of subscript
OFFSETof ARRAY, and inserts LIST at OFFSETIf any. Simply put, the list @ARRAY[OFFSET.
OFFSET + LENGTH- 1] is replaced by LIST. The syntax shows that this function takes three
forms, and | am going to describe them one by one.

splice ARRAY, OFFSET, LENGTH, LIST

This performs exactly the action above. In the example below, an array containing the 26
lower casealphabets was built, and 5 elementsstarting from the 5™ element (i.e. the letter “e”)
is converted to uppercase.This is done on line 2. First @alpha[4 .. 8] contains the 5 letters
that are to be converted to uppercase(remember that subscripts start at 0). The map function
calls the uc function (uppercase)for every element in this list, thus converting (e", "f',
"g", "h", "I to("E", "F', "G", "H", "I') .Thesplice function, therefore,replacesthe
lower caselist with the uppercaseone. uc and mapwould be covered later.

~NOoO o~ WDN PR

3.2 Lists and Arrays 33

EXAMPLE 3.5 splice

#[usrlb in/perl -w
Exanple 3.5 - splice

@lpha = (a"' .. 'z');

splice @lpha, 4, 5 mp(uc, @lpha[4 .. 8]);
="

print @l pha;

What you will seeon the screenshould be all lower casealphabets exceptE, F, G, H and I.

splice ARRAY, OFFSET, LENGTH

If you don't specify the replacementlist, the action is merely removing LENGTH elements
from ARRAY starting from subscript OFFSET

splice ARRAY, OFFSET

If you don't specify the LENGTH, Perl assumesthat all elements starting from OFFSETare
removed. OFFSETIis just a subscript and can be negative aswell. A negative value speci es
the OFFSETis counted from the end of the array as mentioned earlier, e.g. -1 means the
last item, -2 means the second last item etc. Therefore, pop @MyArray can be equivalently
accomplished by splice ~ @MyArray, -1.

The following table summarizes how you canusesplice in place of other functions discussed
earlier (still remember that in Perl you always have a number of ways to do the sametask?).
You may nd the equivalent method for push() strange, but after you have learnt the whole
theory behind contexts you would understand it. We would use this illustration again when
we come to contexts.

Function Equivalent Method

push(@Array, $x, $y) splice(@Array, @Array, 0, $x, $y)
pop(@Array) splice(@Array, -1)

shift(@Array) splice(@Array, 0, 1)
unshift(@Array, @x) splice(@Array, 0, 0, @x)
$Array[$x] = $y splice(@Array, $, 1, %)

Table3.1: Relationshipf somearray functionswith splice()

3.2.7 Miscellaneous List-Related Functions
There are a number of useful functions that allow you to manipulate list data in Perl.
join STRING, LIST

Thejoin() function concatenatesa list of scalarsinto a single string. It takesa STRING asits
rst argument which is the separatorto be put in between the list elementsLIST . For example,

34 Chapter 3 Manipulation of Data Structures

join '+, ‘apple’, (‘orange’, 'banana’)

evaluatesto

apple+orange+banana
reverse LIST

In alist context, the reverse() function returns a list whose elements are identical to that of
LIST exceptthe order is reversed. For example:

print join , reverse ‘'a'.'e’ #edcba

The map() function takeson one of the following two forms:

map BLOCKLIST
map EXPR, LIST

The map() function iterates over every item in the LIST, sets$_ to the item concerned and
executesBLOCKor EXPRon eachiteration. The return value is a list consisting of the result of
evaluation of all iterations. BLOCKis a code block enclosing a sequenceof statementsto be
executed. EXPRcan be any expression. Consider this example:

@names= (‘ALICE, tOm', 'JaSON', ‘'peter’);
print join(', " map { ucfirst(lc($)); } @names), "\n";

The output is

Alice, Tom, Jason, Peter

This example prints out eachof the namesin @namesso that they all start with capital letters
while the other characters are in lowercase. This is accomplished by rst converting all
characters to lowercase by the Ic() function, and the rst letter is capitalized using the
ucfirst() function. This processis performed for eachname in @names The sameexpression
may be rewritten as

@names= (‘ALICE', tOm', 'JaSON', 'peter’);
print join(', ', map (ucfirst(lc($)), @names)), "\n";

The rst form of map() is generally preferred to the secondone becauseit is more exible.

The sort() function can be used to sort a list. By default, the sort() function sorts lex-
icographically. The items are ordered by comparing the items stringwise (using the cmp
operator, the specics of which will be introduced in the next chapter). This comparison is
case-sensitive,becauseit is based on the ASCII values of each character The sorted list is
returned by the sort() function, while the original list remains intact.

3.2 Lists and Arrays 35

sort (‘bear, 'Post’, ‘ant"); # (Post', ‘ant’, 'bear’)

Note that while comparing stringwise, capital letters are considered “smaller ” than lower case
letters.

To make the sort routine generic and allow sorting in any arbitary order, you may override
the default sort criteria with your own rules. The method is to insert a code block before the
list, similar to the casefor map() . The value resulted from evaluation of the block determines
how the items are sorted.

The principle of constructing the contents of the block is too advanced at this stage. The rest
of the details can be found in the next chapter. In the following 1 list several most commonly
used sort criteria that you are likely to nd useful:

sort { $a <=> $b } @list; # ascending numerical order

sort { $b <=> $a } @list; # descending numerical order

sort { $a cmp $b } @list; # ascending lexicographical order (default)
sort { $b cmp $a } @list; # descending lexicographical order

case-insensitive ascending lexicographical order

sort { Ic($a) cmp Ic($b) } @list; # or use uc()

Apart from an array, you may use the sort() function together with the keys and values
function to specify how to order the hashitems. For example,

%array = (
'3 => 'apple’,
'11' => 'orange’,
‘5" => 'banana,
);
@key = sort { $a <=> $b } keys %array; # (3, 5, '11)
@value = sort { $a cmp $b } values %array; # (‘apple', 'banana’, ‘'orange’)

3.2.8 Check for Existence of Elements in an Array (Avoid!)

Many new programmers, and programmers who have programmed in other languagestend
to use arrays so extensively that are sometimes inappr opriate from performance considera-
tions. One classical problem is to deduce if a particular piece of scalar data matches any of
the elementsstored in an array (in alternative terminology , checkfor a hit or amiss). In some
languageslike BASIC where a hashis not a builtin type, thereis still little excuseto solve this
problem by searching an array, although you can still implement a hash yourself (For those
who are interestedin implementing ahash themselves, pleaseread Appendix 1).

In general, you can check if a certain element exists in an array by linear search. That is,
you search from the rst element up to the end of the array. In the following code snippet,
a random list containing 100 entries is generated randomly and you can enter a number to
be searched. The program then searches for the number. When the search ends, it returns
whether it is found, and how many elementsthe program has searched.

EXAMPLE 3.6 Linear Search of an Array

© 0O ~NO UL WN P

WWWWWWWWRNRNRNNNNNNNNRRRRRRERRERRRR
NO O RONPRPOOXONOODUIDWNROOONOOUNMAWNLEREO

36 Chapter 3 Manipulation of Data Structures

#/usr/b in/perl -w

Linear search of an array

Note that if you later on want to search for sonething froma
list of values, you shouldn't have used an array in the first

pl ace.

Cenerating 100 integers

$NUM = 100;

$MAXINT = 5000; # 1 + the maxi mum integer generated
srand(); # initialize the random ze seed

print "Numbers Cenerated:\n(";

for $i (1 .. $NUM {

push @rray, sprintf("%l", rand(1) * $MAXI NT);
print $array[$i-1];
print ", " unless ($i == $NUM;

!

print ")n \n";

print "Please enter the nunber to search for >> ";

chonp($t oSearch = <STDI N>) ;

Linear search here

$counter = 0; $hit = 0;

foreach $num (@rray) {
$count er ++;

if ($num == $toSearch) {
print "\"$toSearch\" found at subscript ", $counter - 1, "\n";
$hit = 1;
| ast;
}
1
if ($hit ==0) { print "\"$toSearch\" not found in array.\n"; }
print "Number of conparisons: $counter/", scalar(@rray), "\n";

The codeitself is not very important here. In fact, many new constructs used in this program
have not beendiscussedyet. The intent is for you to run the program instead of reading the
source code (but you may do it). Try to look at the list of values printed, and try to enter a
number that is not in the array, a number that appears early in the list, and a number that
appears around the end of the list. A fraction is printed on the screen. The one on the left is
the number of comparisons performed, while the one on the right is the number of elements
in the array (which should be 100in this example). You may also want to increase$SNUMto
increasethe number of integers generated. Of course, in this caseyou will need to increase
$MAXINT accordingly to minimize the chanceof duplication of values.

Note that it is possible to have duplicate values in the array owing to the random nature
of the random number generator. In this program, the rst occurrence(i.e. with the lowest
subscript) will be returned.

© 0O ~NO UL WN P

W WWWWWNDNDNDNDNNDNNNNRPEPPEPEPRPEPEPRPRRERPRE
O B WONPFPOOONOODULA, WNPEPOOOWONOO O M~MWDNPEO

36
37
38
39
40

3.2 Lists and Arrays 37

An alternative schemeis to use Binary Search, a rather classical topic in elementary com-
puter sciencetexts on algorithms. By using binary search, the whole setof values needn't be
searched in the worst case.In the worst caseonly 1ogon comparisons are required. However,
there is an important requirement — the list needsto be already sorted. If not, sorting needs
to be performed rst. Here is the above example rewritten that employs the binary search
algorithm:

EXAMPLE 3.7 Binary Search of an Array

#! [usrlb inlperl -w

Binary search of an array

Note that if you later on want to search for sonmething froma
list of values, you shouldn't have used an array in the first

pl ace.

Cenerating 100 integers

$NUM = 100;
SMAXI NT = 5000; # 1 + the maxi mum integer generated
srand(); # initialize the random ze seed

print "Numbers Generated:\n(";

for $i (1 .. $NUM {
push @rray, sprintf("%", rand(1) * $MAXINT);
print $array[$i-1];
print ", " unless ($i == $NUM;

}

print ")\n \n";

print "Please enter the nunber to search for >> ";
chonp($t oSearch = <STDI N>) ;

First sort it in ascending numerical order
@ortedArray = sort {$a <=> $h} @rray;

Binary search here
$counter = 0;
$start = 0; $end = $#sortedArray; $nid = 0; $hit = 0;
$md = sprintf("%d", ($start + $end)/?2);
while ($start <= $end) {
$count er ++;

print "Searched: ", $sortedArray[$nd]; # which elenment is being {
sear ched

print " in # $start, $end] ["; # the subscript range

print $sortedArray[$start], ", ", $sortedArray[$end], "] \n";

if ($sortedArray[$md] == $toSearch) {
ahit!

print "\n\"$toSearch\" found!\n";

41
42
43
44
45
46
47
48
49
50
51
52
53
54

38 Chapter 3 Manipulation of Data Structures

$hit = 1;
| ast;

} elsif ($sortedArray[$md] > $toSearch) {
decrease upper boundary -> md val ue
$end = $nid - 1;

} else {

update | ower boundary -> md val ue
$start = $md + 1;

}
$md = sprintf("%d", ($start + $end) 2);
}
if ($hit ==0) { print "\n\"$toSearch\" not found in array.\n"; }
print "Number of conparisons: ", $counter, "/", scalar(@ortedArray), "\n";

This implementation is even more complicated than that of the linear search. What is worth
noting is the very low number of comparisons required in any cases(For 100 integers the
fraction printed in any caseshould be at most 7/100). That means among the 100integers
in the list, at most 7 elements searched is suf cient to deduce whether any speci ed number
existsin the array. In Chapter 5, asan exercise,you would be askedto convert this program
into the recursive form.

Binary search works asfollows. Thelist is sorted in either ascending or descending order (as-
sume we have the list sorted in ascending order here). In this algorithm we always maintain
two important variables — $start and $end. Initially they are setto 0 and 99 (the subscript
of last element) respectively. Then the element in the middle (subscript 44)is examined and
compared with the number to be searched. If the number examined is larger than the input
number, that meansthe input number, if exists,would have a subscript lessthan 44,sowe can
shrink the range by reducing $end to 43. Otherwise it would have a subscript greaterthan 44,
sowe increase$start to 45. Such a bisection processis repeated with this new set of $start

and $end, until the number is found or $end is lessthan $start . Note that on eachiteration the
range examined is halved, and that's why the maximum number of comparisons is loga(n).

An example of binary sort is shown in Figure 3.1 18is to be searched and is found on the
third iteration. The red boxesdenote the element in the middle of the range being searched,
and thosein grey are those that are bypassed.

IEE: ZTE
N EFNETE
i NEETE

Figure3.1: An illustration of binary sort

Although it seemsbinary search performs alot better compared with linear search, thereis an
important catch here — most arrays we encounter are not sorted, so the cost of sorting cannot

1The maximum number of comparisons can be calculated by ceiling(logy(n)) where ceiling(y) is the minimum
integer that is greaterthan or equal to y. In this caseceiling(log>(100) = 7.

3.3 Hashes 39

be simply ignored in practice.

As you can possibly seein both caseswhen $NUMis large, neither approach is performing
in an ef cient manner, especially when missesoccur becausein the linear search case,every
element in the array hasto be searched in the worst case(when a miss occurs); while in the
binary search case,the array needsto be sorted rst, and the averagesorting time of an array
grows with the array size 2, so combining sorting and searching may be even slower than the
linear search algorithm. Towards the end of the next section we shall redo this code with a
hash,and you ought to nd the code canbe made cleanerand ahit or amiss canbe determined
fasterin general, especially with large array sizes.

3.3 Hashes

Hash is a special kind of data structure. There are several characteristics associatedwith it. It
practically takes very short time to deduce whether any speci ed data exists. Also, the time
it takes does not largely depend on the number of items stored. This is important because
hashesare usually used for applications that handle alarge amount of data.

An array is simply a contiguous block of memory and is nothing more than that. In order to
support the characteristic stated above, hashesrequire a slightly more complicated internal
structure. This is outlined in Appendix | for your reference. It explains the general principles
that further Perl knowledge is not necessaryin order to understand it. However, in this section
we are dealing with how we use hashesin Perl, and will not discussthe peculiarities of them
here.

As a quick review, eachitem in a hash has a key and a value. The key, which is a string,

uniquely identi es anitem in the hash. The value is any form of scalar data. Hash variables
start with the symbol %.

3.3.1 Assignment

We may assignalist to a hashvariable. In this case,the list will be broken up two-by-two, the
rst one asthe key and the secondasthe value:

%Age = (Tom', 26, 'Peter, 51, "Jones", 23);
Becausea hash contains multiple key-value pairs, this alternative syntax may seemmore in-
tuitive to look at:

%Age = (Tom' => 26, 'Peter => 51, "Jones" => 23);

The symbol => is de ned asan almost equivalent symbol to the comma, so in general any-
where a comma is needed you can replace it with this symbol. However, the use of => is

2In algorithmic analysis, the bestsort algorithms can attain the time complexity of O(nlogn). That is, the sorting
time tisin the form t = Knlog(n) where K is a constantand nis the size of the array. The function grows even faster
than n, so performance degradeswould be evident at relatively large values of n.

40 Chapter 3 Manipulation of Data Structures

particularly intuitive for datathat occur in pairs. In addition, Perl allows even lesskeystrokes
by omitting the quotation marks:

%Age = (Tom => 26, Peter => 51, Jones => 23);

This is becausePerl always interpr ets the word before the symbol => as a double-quoted

string. However, if you omit the quotes, the key cannot have embedded whitespace (space,
tabs and so on). To specify a key with embedded whitespace, the quotes must be speci ed.

Also, becausePerl usesthe semicolon, not a newline, to mark the termination of a statement,
you can make the hash assignment better to look at by writing it in multiline form:

%Age = (
Tom => 26,
Peter => 51,
Jones => 23,

NOTES

One note about why we can omit the quotes here. According to the perldata man-
page, a word that has no other interpr etation in the grammar will be treated as if
it were a quoted string. For example, if an unquoted word is not a reserved word,
lehandles, labels etc. Perl will automatically treatit asabareword. However, avoid
barewords consisting entirely of lower caseletters, becauseall Perl reserved words
are in lower case.As Perl is case-sensitive this eliminates the possibility of potential
name clashesin futur e versions of Perl.

Note that on the nal line there seemsto be a super uous comma there. Yes, it is. The nal
comma before the closing parenthesescan be omitted. But it is customary to have it there
in the above multiline form becauseit is likely that you may append more key-value pairs
later on. Then you will have to add the comma back, and it will resultin an error if you have
omitted to do so. Bearin mind that the four formats above are identical, and you may choose
the form which looks bestto you. An empty hashis an empty list assignedto a hash variable,
similar to the caseof arrays.

Becausein the assignment operation Perl expectsalist asthe rvalue, apart from lists you may
aswell assignan array, or even a subroutine returning a list to the hash variable. Note that
the hash variable provides alist context here.

If we assign a hash variable to an array, or anywhere a list is expected, the key-value pairs
stored in the hash will be returned in list form. However, becauseof the way the key-value
pairs are stored in a hash, they may be (actually most likely) returned in an order different
from when they were put into the hash.

3.3.2 Accessing elements in the Hash

Accessing an element in a hash is similar to that from an array, except we replace square
bracketswith curly onesand instead of an index, the key is used. Here's an example:

© 0O ~NO UL~ WNPRP

3.3 Hashes 41

print ~ $Age{Tom};
The stuff within the curly brackets is an expressionthat is evaluated as a string. Therefore,
Tom is equivalent to 'Tom' in this case.To associatea scalarvalue to a key is assimple as:
$Hash{’Key} = $value;

If Key already exists, it is assigned the supplied value; otherwise, a new key-value pair is
added to the hash.

3.3.3 Removing Elements from aHash
Perl provides the delete function for removing aspeci ed key-value pair from a hash. Here's
an example:
delete $Age{Tom};
This function returns the deleted scalar value associatedwith the speci ed key(s). Soif you

print the return value in the above statement, the value(s) deleted would be displayed on
screen.

To delete all key-value pairs in a hash, you can of course use a loop to do it, but this is slow
and it would be more ef cient to use either method below:
%Age = ();
or
undef %Age;

Hereis a special example for delete that is worth mentioning:

%hge = (
Tom => 26,
Peter => 51,
Jones => 23,

);

@enp = delete @ge{'Tom, 'Peter'};

$! = " " ;

print "Deleted values:", @enp, "\n";

print "Remaining keys:", keys @\ge;

On line 6, we delete multiple key-value pairs from %Age Note that the function returns alist
of values associatedwith the deleted keys, so the symbol used should be @.

Line 9 intr oducesthe keys function. It returns alist of keys in the speci ed hash. Thereis a
corresponding values function that returns alist of values contained in the hash.

© 0O ~NO UL WDNPF

NRNNNNNNNNRPRPRRPEPRRERPRERPR
O ~NoO U DNWNRPOOONOOUNWNERO

42 Chapter 3 Manipulation of Data Structures

3.3.4 Searching for an Element in aHash

You may testif a particular key existsin a hash by using the exists function. However, even
if the key existsin the hash, the value associatedmay be unde ned. Usethe defined function
to testif the value is de ned.

Recall earlier we had a program that generated 100integers in random and you look for the
existenceof a particular number in the list. We now presentthe version using a hash. The
number of comparisons taken is not shown, asyou cannot get this information with a builtin

hash. Of courseif you build a hashyourself you would be able to seethe ef ciency of hashes.
At least, you will nd the implementation is a lot easier compared with the two previous
approaches.

EXAMPLE 3.8 Searching for an Element in a hash

#![usrlb in/perl -w
Search for an el enent in a hash

Cenerating 100 integers

$NUM = 100;
SMAXI NT = 5000; # 1 + the maxi mum integer generated
srand(); # initialize the random ze seed

print "Numbers Generated:\n(";
for $i (1.. $NUM {
$val ueTol nsert = sprintf("%l", rand(1) * $MAXI NT);
$hash{$val ueTolnsert } = 0; # in fact, any values can be assigned here
print $val ueTol nsert ;
print ", " unless ($i == $NUM;
}
print ")\n \n";
print "Please enter the nunber to search for >> ";
chonp($t oSearch = <STDI N>) ;

Hash search here
i f (exists($hash{$toSearch})) {
print "\"$toSearch\" found!\n" ;
} else {
print "\"$toSearch\" not found!'\n";

}

Notice how clean it is to determine whether the number existsin the hash in this case(line
24).In this example, the numbers are stored askeys in the hash. We usethe exists() function
to check if the key exists in the hash. This function returns TRUE if the speci ed key exists.
Note that you canaswell usedefined() in place of exists() in this example. This function
returns true only if the key existsin the hash, and the value is not unde ned (i.e. undef).

Table 3.2summarizes the differencebetween defined() and exists()

3.4 Contexts 43

Function Key Exists Value Undened Return Value

exists() Yes No TRUE
Yes Yes TRUE
No N/A FALSE
defined() Yes No TRUE
Yes Yes FALSE
No N/A FALSE

Table3.2: Differencedetweerexists()andde ned()

In the example, because0 (or anything exceptundef) is assignedasvalue to eachkey put into
the hash, therefore, exists() and defined() yields the sameresults.

Owing to the nature of a hash, duplicate keys are not allowed. However, as| have previously
noted it is possible that by using such a random generation schemeduplicate elements may
be generated, and in this caseexactly only 1 instance is stored, so the number of elementsin
the hashin this example can belessthan 100.

3.4 Contexts

The idea of contexts in Perl may appear a bit odd at rst glance, but you would soon dis-
cover that contexts are actually quite intuitive to understand, becausethere are many real life
examplesresembling contextsin Perl.

First, look at thesetwo phrases. Note that the sameword “pr ess” appearsin both sentences,
but their meaningsin the phrasesare entirely different.

Pressthe button
Freedom of press

The word “pr ess” plays different rolesin the two sentencesone acting asa verb and the other
asanoun. Therefore,to deduce the meaning of the word in the phrase, we have to look at the
wor ds surrounding it, in other wor ds, the context.

I'm sureyou would nd many other examplesthat exemplify how contexts play their rolesin
our daily lives, sol am not going to spend too much time mentioning things you may have
already known. Recall that earlier in this chapter | obtained the number of elements of an
array by using an assignmentlike this:

$numElements = @colours;

You may nd this assignmentrather peculiar. It seemsthat | have beenassigning list data to
scalardata, and they actually don't match! How can a scalar data store an array?

Yes. That's impossible (unless by using references- that we will seeat a later part of this
tutorial). Also recallthat | mentioned earlier that | was “evaluating an array in scalarcontext”.
Now | am telling you what this phrase means.

44 Chapter 3 Manipulation of Data Structures

Becauseyou are now assigning something to a scalar variable, the data type expected on the
right hand side of the assignment operator is naturally a scalarvalue. In this way, we have
createdascalarcontext around the array @colours . Becausea scalarvalue is requestedinstead
of an array, Perl de nes that by evaluating an array in scalar context, the number of elements
stored in the array is returned and the value of which is assignedto $numElements .

It is important to bearin mind that the rules asto how a data type is evaluated in another
context depend on the de nition, and there is no general rules of inference. Later on, when
you are to write subroutines, you will betaught to usethe wantarray() function to determine
the contexts sothat you can specify what to return from your subroutine in dif ferent contexts.

Remember | have mentioned Boolean context earlier in this chapter? Actually thereis not a
“Boolean” context, becausePerl does not have an intrinsic Boolean data type. Perl achieves
this by using scalar context instead. Perl de nes that the numeric zero (0), the empty string
(") and the unde ned value (undef) are interpr eted as FALSE, and all other scalarvalues are
interpr eted as TRUE. Therefore, anywher e a Booleantest is expectedyou can place any scalar
value thereinstead, and Perl shall evaluate it accoring to this rule.

Sometimesyou may want to evaluate a list in scalar context, but it is in list context instead.
A useful function about contextsis scalar , which provides the necessaryscalar context, asin
the following example:

print scalar(@array);

Without the scalar function, the array is evaluated in list context and so the contents of the
array will be print ed. However, if we would like to print the number of elementsin the
array instead, the scalar function provides the necessaryscalar context for this purpose.

| do not aim at telling you everything about how dif ferent contexts give rise to dif ferent be-
haviours when we deal with operators at the moment. Instead, it is important to realize that
operators can exhibit different behaviours depending on the context they are in. You are go-
ing to have a boring day probably reading the next chapter, asyou are going to know in more
details how eachoperator is affected by contexts.

3.5 Miscellaneous Issues with Lists

Before we start a new chapter, let us pay attention to several issues concerning lists which
have not yet beenmentioned above.

You have seenin the previous section that, becauseof evaluation of an array variable in scalar
context, the number of elementsin the array is returned:

$a = @array;

but things get entirely different when you write it this way:

$a = (35, 48, 56);

3.5 Miscellaneous Issueswith Lists 45

This is a special case,becausein scalarcontexithe list on the right of the assignmentoperator is
actually alist of values delimited by the comma operator (,). This operator is borrowed from
C/C++ and hasnothing to do with lists or arrays. The behaviour of this operator is, evaluate
each of the expressions(in this case,numbers) delimited by commas, and return the value
resulting from the last expression. Therefore, in this example 56 is returned and assignedto
$a. This applies to void context aswell. While

@array = (35, 48, 56);

the commasthere act aslist argument separators. As arule, always bearin mind that alist is
only alist in list context. In other contexts the rules of comma operators apply.

Thanks to the exible syntax of Perl, we canassignmultiple values concurrently, like this (this
is called list assignment):

($a, $b) = (11, 22);

Both sidesare lists of the samesize, sothis is just amapping: 11is assignedto $a and 22to $b.
What about if the list on the right has more elementsthan the one on the left? Then the extra
elementsare simply ignored. What about if the list on the left hasmore elements? Then some
variables in the left hand list shall receive the value undef , asyou may expect. To swap the
values of two variables, an operation that requiresan additional temporary variable in most
other programming languages,you can perform it in Perl simply by:

x, $y) = (By, x)

Consider this example and try to guesswhat happens:

($a, @b) = (11, 22, 33, 44);

1lis assignedto $a. The remaining threeelementsare assignedto @b But what if you do this?

(@a, $b) = (11, 22, 33, 44);

In this case,@agobbles up all the values in the list, leaving the value undef to $b. We describe
this behaviour as“gr eedy”.

In this chapter, you have learnt how to use the three fundamental data structuresin Perl,
namely variables, arrays and hashes.| have also tried to give you someideas on the concept
of contexts, which is of fundamental importance in Perl. In the next chapter, | will introduce
to you the operators available in Perl.

46 Chapter 3 Manipulation of Data Structures

Chapter 4

Operators

4.1 Introduction

Operators are important elementsin any programming language. They are so called because
they operate on data. For those who are new to computer programming the operators with

which they may be most familiar are the arithmetic operators, like addition, subtraction, mul-

tiplication and division. Yetthere are many more varieties of operators in programming lan-

guages. Perl provides more operators than most programming languages | could think of,

but most of them fall within one of the several categoriesthat we would go into detail in this

chapter. Although devoting an entire chapter to discuss operators is rather boring, it is im-

portant for you to understand what operators are asthey actasthe glue to bind piecesof data
into an expression.

Arithmetic operators manipulate on numeric scalar data. Perl can evaluate an arithmetic
expression,in away similar to our daily-life mathematics.

Assignment operators are used to assign scalar or list data to a data structure. Apart from =
that you learned earlier, there are other operators, like +=, that perform additional operations
at the sametime.

Comparison operators are used to compare two piecesof scalar data, e.g. alphabetically or
numerically and returns a Boolean value. For example, you have two variables and you can
use a comparison operator to deduce which one is numerically larger.

Equality operators comparestwo piecesof scalardata and returns if their values are identical.
They may be considered special casesof comparison operators.

Bitwise operators provide programmers with the capability of performing bitwise calcula-
tions.

Logical operators canbe used to do some Booleanlogic calculations.
String manipulation operators manipulate on strings.

There are some other operators that do not fall into the categoriesabove. Someof them will be
covered in this chapter, and the restwould be intr oduced as needed in subsequent chapters
in this tutorial.

47

48 Chapter 4 Operators

BecausePerl classi es all data into one of the two forms, namely scalarand list data, operators
can be classi ed, similarly according to the number of operands, into two groups. Either
the number of operands is xed or variable. An operator that takes on one, two and three
operands are referred to asunary, binary and ternary operators, respectively. List operators,
on the other hand, cantake alist of arguments asoperands.

4.2 Description of some Operators

In this sectionwe shall study a number of operators. This is not intended to be afull coverage
becauseit would be better for you to learn the restlater on in the tutorial asyou accumulate
more Perl knowledge. If you would like to have a detailed reference of the whole family of
operators in Perl, pleaseconsult the perlop manpage.

4.2.1 Arithmetic Operators

Arithmetic operators refer to the following operators:

? + (addition)

? - (subtraction)

? * (multiplication)

? | (division)

? %(modulus)

? + (positive sign)

? - (negative sign)

? ++ (autoincrement)
? - (autodecrement)

? = (exponentiation)

The operators +, -, *,/ take two operands and return the sum, dif ference,product and quotient
respectively. Note that the division operation is oating-point division. Unlike C, Perl does
not offer builtin integral division. To getthe integral quotient, you may usetheint() function.
For example,int(7 /| 2) evaluatesto 3.

Perl won't round a number to the neaestinteger for you automatically. If you need this, the

“corr ect” way to do this is

$num =7 / 2
print int($num+0.5), “\n";

http://www.perldoc.com/perl5.8.0/pod/perlop.html

4.2 Description of some Operators 49

which, becausethe rst decimal placeis 5 or above, the value print ed is 4, not 3.

The modulus operator is more problematic. The operands of this operand are both integers.
If you feed any oating-point numbers (i.e. decimals) as operands they will be coerced to
integers. Assume we are carrying out $a % $b.

If $b is positive, the value returned is $a minus the largestintegral multiple of $b suchthat the
result is still positive. For example,

63 %5 = 3(63=12 5+ 3, the largestmultiple in this caseis 12)
63 %5 = 2(63= 13 5+ 2, the largestmultiple in this caseis 13)

If $b is negative, the value returned is $a minus the largestintegral multiple of $b such that
the result is still negative. For example,

63 %-5 = -2 (63=(13 (5+ (2),thelargestmultiple in this caseis 13)
63 %-5 =-3(63=12 (5+ (3),thelargestmultiple in this caseis 12)

Suchbehaviours are so tedious that most programmers simply usethe modulus operator for
the rst case— where both operands are positive integers, which evaluatesto the remainder
of $a / $b.

The positive/negative signs, just asin our usual mathematics, are unary operators that are
af xed before a number to indicate whether it is positive or negative. Our usual convention
is that the unary positive sign is not speci ed, becauseit is the default asexpected.

If you know C/C++, the autoincrement and the autodecrement operators areidentical to what
you have learned. For those who don't know, it's worth to spend a few minutes to repeatall
the details here. These operators can be placed before or after a variable. There are four
possible variations:

++$var (Pre x Increment)
$vart+ (Postx Increment)

--$var (Pre x Decrement)

NN YN

$var- (Post x Decrement)

The rst two areautoincrement, while the remaining two are autodecrement. If autoincremen-
t/autodecr ement is performed asa statement on its own, the pre X or post x con gurations
do not produce any difference. For example, both ++$a; and $a++; asstandalone statements
increasethe value of $a by 1. However, they are dif ferent if the operators are used aspart of a
statement. Consider the following examples:

A. $b=++33;

B. $b=%a++;

50 Chapter 4 Operators

In statement A, $a is rst incremented, and then the new value is returned. In statement B,
however, the value is returned rst, and then $a isincremented. Therefore, the value returned
(and is thus assignedto $b) is the value before increment. The two forms differ in the order
of increment/decr ement and return of value. Autodecr ement works in the sameway, except
the variable is decremented instead.

In other words, statement A and statement B are identical in effect as the following respec-
tively:

++$a; $b = $a; # Statement A equivalence
$b = $a; ++%q; # Statement B equivalence

The exponentiation operator calculatesthe n" power of a number. For example, 43, i.e. 4*4*4
is expressedby 4**3 , and the result is 64. Both operands canbe oating point numbers.

All the operands discussed in this section take on scalar values only. In other words, they
createa scalar context for the operands.

4.2.2 String Manipulation Operators

String manipulation operators include the following:

A. x (string repetition operator)

B. . (string concatenation operator)

The string concatenation operator is used to concatenatetwo strings. In other words, it glues
two piecesof string together. For example,

"hello " . "guy
resultsin the string “hello guy”.

You can concatenateas many piecesof string asyou wish by using a seriesof concatenation
operators together, like this:

$username . ", your disk quota is " . $quota . " Megabytes."

In general, the concatenation operator dictates that both operands must be strings, and nu-
meric operands would be converted to string form before concatenation (still remember that
Perl does type conversions internally if necessary?).However, Perl can become highly con-
fused about whether you are using the concatenation operator or the decimal point if both
operands are numeric literals. For example:

A. print "1""1"; (return: “11")

B. print "1"1; (return: “11")

4.2 Description of some Operators 51

print ~ 1."1" (return: “11")
print 1.1, (return: 1.1)

C
D
E. print 1. 1; (return: “11")
F. print 1. 1; (return: error!)
G

print 1 .1, (return: “11")

In caseA, B and C, Perl thinks that the dot representsthe concatenation operator becauseone
or more operands is a string literal. Note the difference between casesD and E. Although
whitespace does not in uence how Perl interpr ets an expressionin general, this is not the
caseasshown in this example. In caseD, becausethe dot follows the rst 1immediately, Perl
thinks that you would like to usethe decimal point, and returns the numeric value 1:1. In case
E, however, becausethere is a spacebefore the dot, Perl thinks that you would like to usethe
string concatenation operator, and glues them up for you. Sois caseG.

However, in caseF, Perl thinks that you would like to supply a oating-point number like
in caseD, but you supply it with two numbers with no comma in between (note that 1: is
identical to 1), sothis is asyntax error! You getthe sameerror if you replacecaseF with print

2 3; . However, becauseit is nonsense(although allowed) to concatenatetwo literals, just take
this assome extra information and little attention canbe paid to it.

In scalarcontext, the string repetition operator returns the string speci ed by the left operand
repeatedthe number of times speci ed by the right operand. For example,

$str = "ha" x 5

resultsin the string “hahahahaha” being assignedto $str .

In list context, if the left operand is alist in parentheses,it repeatsthe list the speci ed number
of times. Examples:

@array = ("a") x 3; # or even (@) x 3 will work, but not a x 3

resultsin the list ("a", "a", "a") being assignedto @array .

@array = 3 x @array;

replacesall the elementswith the value 3. Note that the second operand always has a scalar
numeric context.

4.2.3 Comparison Operators

In Perl, there are two setsof comparison operators. The rst set comparesthe operands nu-
merically:

A. <(lessthan)

52 Chapter 4 Operators

> (greaterthan)
<= (lessthan or equal to)

>= (greaterthan or equal to)

m U O w

<=> (general comparison)

The secondsetcomparesthe operands stringwise:

It (lessthan)

gt (greaterthan)

A

B

C. le (lessthan or equal to)

D. ge (greaterthan or equal to)
E

cmp (general comparison)

At this point it is important to tell you one behaviour of Perl. As you know, Perl dif ferentiates
only scalarand list data. That implies that Perl is quite ignorant about whether the value of a
given variable (or a scalarelement of a list) is a string or a number. This is why we have two
setsof comparison operators de ned in Perl, in this way the programmer should choosethe
appropriate setof comparison operator for comparison.

Becauseof the fact that Perl does not dif ferentiate string and numbers much, it allows you to
use a string wherever a number is required, and vice versa. However, this involves a conver-
sion that | have to explain it here. This behaviour is not speci ¢ to comparison operators only,
but a general rule that you have to bearin mind at all times when you are writing your own
scripts. Consider the two statementsbelow:

A. print "23.1labc" + 4
B. print "23.labc" . 4

The addition operator (+) requires a numeric context (i.e. it requires numeric values as
operands). Therefore, Perl extracts the leading numeric portion of the double-quoted string
until anon-numeric characteris encountered, and converts this portion into a number (which

yields 231 in this example). 4 is then added to this number, thus yielding 27:1 for the rst

statement. But what if the string started with non-numeric characters?Simply aOis returned.
Also, if the string-to-number conversion involves astring that contains any non-numeric char-
acters,Perl will display awarning messageif you have warnings turned on.

The concatenation operator (.) requiresa string context. Therefore, Perl converts the second
operand (4) into astring and is then appended to the end of the rst operand (“23.1abc”), thus
yielding the output “23.1abc4”. This is how Perl automatically converts between numbers
and strings to and forth asneeded.

Comparing two numbers is easy, but what about two strings? How doesthe computer com-
pare two strings, possibly with non-alphanumeric charactersin it? Perl comparestwo strings
by comparing the ASCIl Code of eachindividual characterin the string. As internally the
computer only recognizesnumbers, a way of representing characterswith numbers have to

4.2 Description of some Operators 53

be devised. ASCII representationis one of the several schemesavailable, and is well adopted.
You cango to this website to consult the ASCII Table, which contains the characterswith their
associatedASCII code. ASCII codesare in the range 0 - 127,and there is an extended setin
the range 128 - 255 which is not well supported on many systems. Don't ask me why the
charactersare assignedin this way. The ASCII table was de ned as such, and there's little
signi cance about its origin anyway. Let's compare the two piecesof string in this example:

“Ur gent”, “agent”

Perl compares character by character. First compare the rst character of the two strings, “U'
and "a'. "U' hasthe ASCII code of 85,while "a'is 97. Because97is greaterthan 85,Perl decides
that the latter characteris greater, and thus “agent” is greater than “Ur gent”. In the caseof
comparing “tooth” and “toothpicks”, the longer one prevails for obvious reasons.

After you have learned how Perl handles string and numeric comparison in general, it's time
to look at how you specify the comparison with Perl. That's easy, becauseyou merely put the
appropriate operator in between the two operands. For example, to testif “agent” is lessthan
“Ur gent” stringwise, simply specify "Urgent" It "agent" , and the result is true. Note that
Perl does not have the intrinsic Boolean type, so if you passthe result directly to the print
function, it is customary for Perl to output 1 for true, and “* (an empty string) for false. The
bestway to have the test result displayed properly is by using the conditional operator ?: . |
will talk about this shortly later on in this chapter, but this is how you cando it:

print "Urgent" It "agent" ? "true" : “false";
causesthe word “tr ue” to be printed if the testis true, and “false” is printed if otherwise.

Here is another example showing how numeric comparison may be used to decide on which
block of code to be executed:

if ($score >= 90) {

print "Well done. Your score is $score\n”; # A
} else {
print "Work hard. Your score is $score.\n"; # B

}

In the next chapter you will learn how to usethe conditional statementlike if aspresentedin
this example. Basically, the conceptis simple. If the value of $score is greaterthan or equals
90, statement A is printed; statement B is printed otherwise.

Be aware that you may get dif ferent results if you compare two piecesof scalar data numeri-
cally or stringwise!

The <=> and cmp operators can be regarded as general comparison operators. Becauseof the
shape, they are sometimes referred to in Perl manpages as spaceshipperators <=> compares
numerically while cmp compares stringwise. The action of these two operators are similar,
and | shall take <=> asan illustration.

The characteristics of <=> is asfollows. Denote the left operand as $a and the right operand
$b. If $a < $b, theresultis-1. If $a > $b, the resultis 1. If both operands are equal, that is, $a

http://www.asciitable.com

54 Chapter 4 Operators

== $b (seebelow), the result is 0. This is a handy operator to quickly establish a trichotomy
by determining in a single operation whether a number is greater than, equal to or lessthan
another. Despite its power, it is seldom used in practice. It is mostly used with the sort()
function to sort a list of scalarsin a convenient manner.

4.2.4 Equality Operators

Equality operators include the following:

== (equal - numeric)
I=" (not equal - numeric)

eqg (equal - stringwise)

ne (not equal - stringwise)

Similar to the casefor comparison operators, we have two setsof equality operators. One set
for numeric comparison, the other setfor strings. Equality operators can usually be regarded
as part of the comparison operators, but some books may prefer to classify them into two
categories. There's actually little point to argue which approach is better, as different book
authors take dif ferent views. Equality operators comparestwo piecesof scalardata and return
aBooleanvalue (again, scalarvalue instead in Perl) that indicates if the two piecesof data are
identical.

The rst two operators compare numerically, while the remaining two compare stringwise.
For the equal operators (==, eq) they return true if the two operands are identical, false if
otherwise. The inequality operators (=, ne) have an opposite sense,they return false if the
two operands are identical, true if otherwise.

The equality and comparison operators we have covered so far are concluded by these four
examples:

true’ == 'false’ # true !
'‘add’ gt 'Add" # true
'adder gt ‘'add" # true

S 0 w >

10" It "9 # true

In example A, == requiresa numeric context, thus both strings are converted into 0. Both sides
are equal and evaluatesto true (although you would receivea warning if -w is enabled). In
example B, Perl will stop after checking the rst charactersince "a'is greaterthan "A'. Beware
that in the ASCII table capital charactershave smaller ASCII codesthan the small letter coun-
terparts! In example C, becausethe rst three charactersare the same and Perl cannot yet
deduce whether “adder’ is greaterthan “add' the longer string shall be considered greater. In
example D, sincewe compare with It , “1'is lessthan "9', therefore, the comparison evaluates
to true. This example and example A illustrate why in Perl we need 2 setsof comparison op-
erators. BecausePerl is loosely typed and doestype conversions automatically, there should
be a method for Perl to know whether you would like to compare them asnumbers or strings.

4.2 Description of some Operators 55

4.2.5 Logical Operators

Logical operators include the following:

|| or (Logical OR)
&& and (Logical AND)

' not (Logical NOT, i.e. negation)

xor (Logical XOR - Exclusive OR)

The logical operators performs Booleanlogic arithmetic. We have seenhow to do atest using
the comparison and equality operators. But what if you would like to carry out two or more
testsand checkif all of them are true? Boolean algebra can do it rather easily. However, it is
out of the scopeof this tutorial somehow for me to teachyou the speci cs of Booleanalgebra,
and | would focus on how to usethe Perl logical operators only.

You may discover that there are two setsof OR ANDand NOToperators. || , & and ! referto
the C-Style version. If you know C/C++, theseoperators would look familiar to you, and are
continued to be supported in Perl. Perl also hasits own set, consisting of or , and, not and xor .
Note that Perl gives you an extra xor logical operator, that is not available in C/C++. Thetwo
setsdiffer only by precedence(which you will learn in the next section). The C-style operators
have higher precedence,while the Perl operators have the lowest precedenceamong all the
Perl operators.

In the above example, we would like to seeif the results of both tests are true. We can then
use either logical AND operator to do it. The result would be true only if both testsare true,
and false if otherwise. The logical OR operators return false only when both tests are false,
and true if otherwise. The logical NOT operator toggles the truth value. For example, !(13 <
25) is false, becauseit inverts the truth value of 13 < 25, which is true.

The exclusive or operator returns true if exactly one of the two operands is false. That is, one
is true while the other is false.

Here s the truth table of the logical operators we have covered so far:

testl test2 and && or || xor
true true true true false
true false false true true
false true false true true
false false false false false

test not !

true false

false true

Table4.1: Truth tableofvariousPerllogicaloperators

Here are several examplesto conclude:

© 0O ~NO UL WNPF

e e
A WNRO

56 Chapter 4 Operators

(4<8) && (16<32) (return: true)
(4<8) xor (16<32) (return: false)
(4<8) || (16<10) (return: true)

Another important behaviour | haven't told you yet concerning logical operators is the short-
circuiting property. Take and asan example. Given the expression

4 >6) and (5 < 7)

you cantell by merely looking atthe rst expressionthat the whole expressionis false,regard-
less of the value of the second expression. Similar to the casefor the or operator, if the rst

operand evaluates to true already, it is not necessaryfor Perl to examine the second expres-
sion. Therefore, Perl will just ignore that expressionand do NOT even attempt to evaluate it.
This behaviour is known asshort- circuiting. The logical AND aswell aslogical OR operators
support short-circuiting. xor , for example, cannot short-circuit becauseits nature requiresthe
value of both expressionsbe examined.

Short-circuiting is signi cant becauseit eliminates several runtime errors, in particular in the
following example we will not get the “division by zero” error becauseof short-circuiting:

EXAMPLE 4.1 Safe Division

#[usrlb in/perl -w

print "== Safe Division ==\n";

print "Please enter the dividend > ";
chonp($x = <STDI N>);

print "Please enter the divisor > ";
chonp($y = <STDI N>);

$quotient = ($y?"Anything":undef) && $x/$y;
if (!defined $quotient) {
print "Division by zero!\n";
} else {
print "$x / $y = $quotient\n";
}

This example looks rather dif cult to understand. However, the core of the program is on
line 9. First, the value of $y is checkedfor zero (or empty string, if you don't enter anything).
If it evaluatesto zero, undef will be returned after the ?: operation. There is one catch here
— if any of the operands in a logical operation is undef , the result is undef instead of true
or false, a behaviour that is not shown in the truth table above. As a result, $quotient will
immediately getthe value undef without evaluating $x/$y . If $y != 0, the string “Anything”
will be returned. In fact, in this example you can substitute this string by any expression
that evaluatesto a non-zero value becausethis is only usedto supply atrue value asthe rst
operand of the &&such that short-circuiting does not occur. As aresult, the expression $x/$y
is evaluated and the result of which is returned and assignedto $quotient

Subsequently, a check of whether $quotient is undef is suf cient to tell whether “division

4.2 Description of some Operators 57

by zero” occurs. Depending on this result, either an error messageor the quotient will be
print ed.

4.2.6 Bitwise Operators

Bitwise operators refer to the following:

<< (binary shift left)
>> (binary shift right)

& (bitwise AND)
| (bitwise OR)
" (bitwise XOR)

(bitwise NOT)

The rst two operators are the binary shift operators. The two operands of these operators
must beintegral. As you may know, numbers are representedin binary form internally. The
left operand is the number to be operated on, while the right operand is the number of bits to
be shifted. Let me explain this with the help of an example.

Say you would like to perform 60 >> 2. First we convert 60 into binary notation, that is
111100 (subscript 2 meansrepresentationin base2,that is, binary). In this example we intend
to shift 2 bits to the right, that meansthe two least signi cant bits (the bits on the far right)
are removed, and thus resulted in 1111, which is 15,5 in decimal notation, so 15 would be
returned.

We have used the binary shift right in the example. On the other hand, the binary shift left
operator doesthe opposite. It shifts the integer speci ed left aspeci ¢ number of bytes, lling
the least signi cant bits with 0. Observant readersmay notice that eachbinary bit shift to the
left actually multiplies the number by 2. Try it.

The remaining four operators compare the two integral operands bit by bit. As an example,
to extract the 4 least signi cant bits of the number $num, we can use the expression $num &
15. The returned value is the integral expressionof the last 4 bits of $num. The reasonis quite
simple. The binary representationof 15is 1111,. Say$numtakesthe value of 37(10010%). The
operation is shown below:

000101

The bitwise AND operator compareseachbit. If both corresponding bits are 1, the resulting bit
is 1; otherwise 0. The above example demonstratesatechnique known asbit-masking , and 15
is the mask in this example. To extract speci ¢ bits, just setup a mask with the corresponding
bits setting to 1, and O for other bits that we are not interestedin. Note that although 15is only

58 Chapter 4 Operators

4-bit long, you may consider that it is extended automatically to 6 bits, with the two most
signi cant bits setto O.

The other bitwise operators have the same semantics as their logical operator counterparts
exceptthe truth value is representedby 1 and O for true and false respectively. Therefore, the
details of which are not repeated here.

Bitwise operators are in general rarely used in most scripts. They are usually only used in
applications such ascryptography or binary le access.

4.2.7 Assignment Operators

Assignment operators refer to the following operators:

= (assignment operator)
+= -= *z= [= Y%=*= (arithmetic manipulation with assignment)

= x= (string manipulation with assignment)
&&= ||= (Logical manipulation with assignment)

\&= |= "= <<= >>= (Bitwise manipulation with assignment)
| have mentioned quite alot about the ordinary assignmentoperator =in the previous chapters
already. Now consider this example:

$num = $num + 15;

You should understand what this means, do you? The value stored in $numis added to 15,
and the result is again assignedto $num. The net effect is to increment the value of the variable
by 15. However, some people may prefer that manipulation and assignmentbe accomplished
by one, instead of two operators. Therefore, Perl recognizes several shorthand notations as
shown above.

In general, if you canwrite astatementin this format:

opl = opl operator op2;

you can have a shorthand version like this:

opl operator = op2;

For instance, the example above is identical to $num += 15; However, note that not all the
operators mentioned above have such a shorthand version. Look at the list above for all the
recognized shorthand operators. As an example, to invert all the bits in an integral scalar

variable (that is, on atechnical parlance, to assignthe “1s complement” to the scalarvariable),
we have to write

$num = “$num;

4.2 Description of some Operators 59

4.2.8 Other Operators

Here | shall intr oduce to you some other operators that do not t in any of the above main
categories. The operators that would be covered here include the conditional operator and
the range operator. The comma operator and => have already beendescribed in detail in the
previous chapter. Putting asidethe builtin functions that may be considered operators in Perl,
the remaining operatorsare->,= and! .| have chosento defer mentioning the remaining
operators becausethey are related to some later topics and | would cover them in those
sections. The rst one, the arrow operator is similar in some senseto the pointer -to-member
operator in C. This would beintroduced in the referenceschapter. The other two are used for
pattern matching with regular expressions.

The conditional operator ?: is aternary operator. In other words, it hasthree operands. The
syntax is asshown below:

test-expr ? exprl : expr2

The rst operand (test-expr) is an expression. If this expressionevaluatesto true, exprl will

be returned by the conditional operator; otherwise, expr2 is returned. You are likely to use
conditional operators quite often in the futur e becauseit is considered too “bulky” to usethe
if-else structure all the time. This is an example using if-else to compare the values of $a
and $b, and assignthe smaller value to $c:

if ($a < $h) {
$c = $q

} else {
$c = 3$b;

}

By using the conditional operator, this 5-line structure (although no one will stop you from
writing all this on one line) can be transformed into the simpler statement:

$c =%a < $b ? $a : $b;

The following example is extracted from the perlop manpage which demonstrates how the
list context around the conditional operator propagatesto exprl and expr2 .

$a = S0k ? @b: @c;

In this example, depending on the value of $ok, the number of elements of either @bor
@cis returned and assigned to $a. First, the assignment to $a creates a scalar context
around the conditional operator. Therefore, the conditional operator is expected to return
ascalarvalue, and sothe two possible valuesto bereturned will be evaluated in scalarcontext.

Although the conditional operator is inherited from C, there is one important behaviour that
is unique to Perl. The conditional operator can be assigned to if both exprl and expr2 are
legal Ivalues. This is an example:

60 Chapter 4 Operators

($whichvar 2 $varl : $var2) = $new_value;

In the next section, “Operator Precedenceand Associativity”, we would see an example
on how you may obtain unexpected results involving the conditional operator because of
operator precedence.

The behaviour of the range operator is (..) depends on the context around the op-
erator. The range operator actually consists of two disparate operators in list context and
scalarcontext. The range operator in list contextis morefrequently seen,sol will coverit rst.

I have introduced the range operator in list context briey in the previous chapter, when
| described how you can construct an array. The range operator in list context returns an
array consisting of the values starting from the left value, with the value of eachsubsequent
element incremented by one until the right value is reached. For example, @array[0..2] is
synonymous with @array[0,1,2] to return an array slice. Note that both the left and right
values would be converted to integer by chopping off the decimal portions in casethey are
not already integers.

Not only integers can be used in the range operator, you can experiment with alphabets as
well. For example, (‘a' .. 'z") and (‘A" .. 'Z") aretwo lists representing small letters and capital
letters, respectively.

4.3 Operator Precedenceand Associativity

Now we have learned several operators, so it's time for us to put them together. It is not
uncommon that a given statement contains more than one operator. Operator precedence
and associativity arise asaresult. Recallthat in elementary Maths classteachersteachus in a
mathematical expressioninvolving several arithmetic operators, multiplication and division

shall be performed before addition and subtraction. For example, 3+ 6 7 is interpr eted as
3+ (6 7),not (3+6) 7. In this case,we say that multiplication and division has higher
precedence than addition and subtraction operators. Becausemultiplication has a higher

precedencethan addition, the multiplication operation, involving the two operands 6 and 7,
is performed rst, and then the result 42is added to 3, getting 45asthe result.

In Perl, becausethere are many operators, the rules of precedenceis far more complicated. In
order to describethe relative precedenceamong the operators, most programming languages
would use an operator precedencetable to show the relative precedenceof the operators,
and Perl is of no exception. Table 4.2 shows the operator precedenceand associativity table,
which you can obtain from the perlop manpage.

The operators are arranged in order of decreasing precedence.That is, the operators at the top
(Terms and List Operators) have the highest precedence,while the operators at the bottom
(or , xor) have the lowest precedence.Operators on the sameline have the sameprecedence.

The rst column lists the associativity of the operators. Associativity is useful when there
are several operators of the same precedencein a statement. In this situation, the order of
evaluation of these operators depends on the associativity. If the associativity is right, then
the rightmost one would be evaluated rst, then the one on the left, and so on. That's why
cascadedassignment is possible. The idea is the samefor left associative. You may also nd

that some operators are labelled “nonassoc” (non-associative). The operators are classi ed as

4.3 Operator Precedenceand Associativity

61

Associativity Operators

left Terms and list operators (leftwar d)
left ->

nonassoc + -

right **

right ! n + - (unary)

left = |

left * | %X

left + -

left << >>

nonassoc named unary operators
nonassoc <><=>=1t gt le ge
nonassoc == l= <=> eq ne cmp
left &

left | ~

left &&

left I

nonassoc .

right ?:

right = += -= *= etc. (assignment operators)
left , =

nonassoc List operators (rightwar d)
right not

left and

left or xor

Table4.2: OperatorPrecedencand Associativity Table

62 Chapter 4 Operators

non-associativeif the order of evaluation is not important, or not applicable for other reasons.
In general, you don't have to worry about the order of evaluation of the non-associative
operators really much.

To demonstrate the effect of operator precedenceand associativity, let's go over several
scripts here.

#!/usr/bin/perl -W

$ ="\

$a = 13, $b = 25;

$a += $b *= $c = 35 * 2

print "$a == $a, \$b == $b, \$c == $c";

This one is practically easy | would use it to illustrate how precedenceand associativity
works. The problematic statementis on line 5,and you shouldn't have problems with the rest
of the script, sol am focusing on this line only. To deal with this statement, rst try to locate
the operators concerned. The operators, by scanning from left to right, are:

Now locate the operators with the highest precedence,and it is * in this case. Therefore,
multiplication would be performed rst. The operands of this operator are 35 and 2, so
this multiplication vyields 70. The remaining are all assignment operators having the same
precedence,so we look at their associativity. Becausethe associativity is right, the rightmost
one is evaluated rst, which is =. The operands are $¢ and 70 (the value of the expression 35

2),s070is assignedto $c. Then, $b *= 70 is evaluated, and $b is eventually assigned 1750
(70 25).At last, $a += 1750 causing $a to be assigned 1763.

There is not much confusion here, but let's consider another more tricky example, of which
the result is not necessarilyapparent at rst glance.

#!/usr/bin/perl -W
$! = "l ";
$a =1, $b = 0;

print $a >= $b ? $b : $a += 6, $a;

I rst saw asimilar example from a C++ book, and | adapted it to becomea Perl script. This
is a really notorious example, becauseit includes ?: , which easily leads to unexpected result
if you are not careful enough. | hope you could understand my explanation asthis example,
though seemingly short, is so notorious that it is rather dif cult for me to explain it well.

Now let's have a quiz: without actually running it with your perl interpr eter, try to deduce
the printout of this example. Let's give you two choices:

A. 01
B. 6,1

4.3 Operator Precedenceand Associativity 63

(don't look at the answer below before you have an answer in your mind)

If you chooseoption A, I'm sorry, you'r e wrong. But don't despair, as many people share the
samemistake asyou do, and it is common and understandable for people to make mistakes.
Although novices are more prone to make mistakes, nothing will stop veterans from making
mistakes aswell. Most computer programs we are using have bugs. Somebugs are obvious,
but there are many more hidden oneswhich are not normally revealed unless your program
gives unexpected output. Trust me, debugging is going to occupy most of your development
time, and is the most tedious job for all programmers. If you chooseoption B, congratulations,
you are correct. Hope that you did not get the correct answer by sheerguesswork. Anyway ,
let's look at how we arrive at the answer.

If you chooseoption A, you may have the impr essionthat += has a high precedence but this
is not the case.In this example, ?. also exists,which hasa higher precedencethan +=,s0?: is
evaluated before +=. Here comesthe trouble. The operators, scanning from left to right, are:

print > 7 4=,

print is alist operator, and has the highest precedence.So Perl looks on the right hand side
for its parameters. Then Perl sees>=, which has the second-highest precedence. So $a >=
$b is then evaluated, yielding true. Among the remaining operators, ?: is the highest. The
problem is, what are its operands? As you have learned, this operator hasthreeoperands, the
so-called “test” part (that is $a >= $b, and have found to be true), the “tr ue” part ($b), and
the “false” part. But wait! What is the false part? $a or $a += 6? Its the former one, in the
contrary to what you may have expected.

As Perl scansfrom left to right to nd the false part, it encountersthe += operator, which has
a lower precedencethan ?:, and Perl stops and claims that the false part is $a. Then Perl
knows what to do, so evaluates the conditional operator, returning the true part, that is $b
(that holds the value 0). Anything left? Yes,we still have the dangling += 6 part! It is tricky
that the conditional operator returns an Ivalue if it can,and so$h += 6 is evaluated, causing
$b to hold the value 6 instead. We have nished evaluating the rst argument to the print
operator, and the second operand is $a, which has beenuntouched. That's how we arrive at
the answer “6, 1".

Troublesome enough? Two long paragraphs just to explain one statement. If you are
still scratching your head, try to read these two paragraphs repeatedly until you under-
stand. Soyou see,operator precedenceand associativity cantrip you up if you are not careful.

But what if this is not your intention? What if you'd like to have $a += 6 asyour false part?
Recall how you do this in arithmetic — adding a pair of parentheses. This applies to Perl as
well. This is easily done asthis:

print $a >= $b ? $b : ($a +=6) , $a;

In Perl, parenthesesare treated as “terms”, which has the highest precedencein the prece-
dence table. This ensures that all expressionsin parenthesesare evaluated before other
operators do. Parenthesesis the cure for those who enjoy writing complicated state-
ments but wouldn't like to memorize (or consult) the operator precedencetable. Adding
parentheses appropriately not only eliminates a great deal of effort when you or other

64 Chapter 4 Operators

programmers read your code at a later time, many unexpected errors could be eliminated as
aresult. But sometimes parenthesesdo not add much clarity to your code. Here's an example:

print(lc(shift(@MyA rra y)));

In this example, all but print are named unary operators. Becausenamed unary operators
have only one parameter, in general there is not much confusion if you just omit the paren-
theses. In conclusion, use parentheseswherever appropriate. Feelfreeto insert parentheses
asyou see t to minimize confusion but don't overdo it.

There are several points to note arising from this example. First, although looking na've to
mention here, whitespace is NOT a determinant of the order of evaluation. You de nitely
cannot write the above statement in this way and expect it to work the same way the
parenthesized version does:

print $a >= $b ? $b :$at=6 , $a;

This is actually the same asline 5in the example! Soit returns “6, 1", not “0, 1”. This is
becausewhen the Perl interpr eter loads the script, it parsesit and removes all intervening
whitespace automatically.

Second,you have to be careful about the use of parentheses.Consider theseexamples:

print 1+2+3;

print (1+2+3);

A

B

C. print 1+(2+3);
D. print (1+2)+3;
E

print(1+2)+3;

In the above examples, statements A-C would give the correct answer, 7, while the last
two would give 3. Statements A and B have nothing special. In statement D, however,
becausethe opening braceis placed immediately after the operator, Perl thinks that this pair
of parenthesescontain all the parameters to be sent to the operator. In this case,1+2 is its
only argument, so 3 is printed. Becausethe print operator returns nothing, thus leaving
the dangling part “+3” for Perl to evaluate. Sincethis is a uselessaddition operation, a Perl
warning would be displayed if you have warnings enabled. StatementE is the same as D
(recall that whitespace does not matter?).

For statement C, becauseyou do not have an opening brace immediately following it, Perl
does not think that there are parenthesesto contain the parameters as in statement D. The
parenthesesin statement C is treated in the normal way, that is, evaluated rst, and then the
lower -precedenceoperators.

Third, notice that in the operator precedencecharts there are two entries for list operators.
List operators (leftwar d) in this tutorial (and in the perlop manpage) refer to the name of the
list operator concerned. Such a high precedenceallows Perl to know where such operators

4.4 Constructing Your Own sort() Routine 65

occur, sothat it knows where to look for their parameters. On the other hand, list operators
(rightwar d) applies to the comma-separatedexpressionsto passto the list operator concerned
as parameters. The extremely low precedenceof this part implies that you do not normally
need to put parenthesesaround the parameters. This part acts guratively like a basket
containing all the parameters. The only operators having lower precedenceare the operators
not , and, or and xor . For example,

open HANDLE, "$path/.bash_hist ory" or die "Cant open file\n";

Becauseor has a lower precedencethan list operator (rightwar d), the or part is not treated
as part of the operand for the open() operator. In the example, if the open operation fails, it
returns undef , which is interpr eted as false. Becauseshort-circuit evaluation is not possible,
the second part is executed, which outputs the error messageand terminates the script. You
would learn how to open les later on in this tutorial.

4.4 Constructing Your Own sort() Routine

In the last chapter you have had an overview of using the sort() function to sort a list of
values. | also provided you with alist of common search routines. By now you should have
suf cient knowledge to understand the restof the story.

The principle is pretty simple but rather dif cult to visualize. You override the default sort
criteria by de ning the ordering criteria in the code block of the sort() function. Two special
variables $a and $b are de ned in the block. In order to sort alist of values, the sort routine
needsto establish the total ordering of any two arbitrary items in the list. To do so, it assigns
the two items to $a and $b arbitrarily . The block should perform some comparison operations
in the block basedon thesetwo values. If evaluation of the block yields a scalarvalue that is
negative, the value held by $a comesbefore that of $b. If the result is positive, the value held
by $b comesbefore that of $a. If the result is zero, then the two values should be considered
equal. The <=> and cmp operators are usually used. The following is an example which
illustrates numeric descending sorting.

Assume the unsorted list is (3, 1, 4). To sortin descending numerical order, an appropriate
expressionwhich satis es the above characteristicsis

$b <=> $%a

The following table illustrates how you can try to verify if the comparison works. 3 -> 1
below means 3 comesearlier than 1in the resulting list.

$a $b $b <=> $a Ordering

3 1 -1 3>1
1 4 1 4->1
3 4 1 4-> 3

Table4.3: An Exampldllustrating sort()

Therefore,the ordering 4! 3! 1is established.

66 Chapter 4 Operators

Chapter 5

Conditionals, Loops & Subroutines

5.1 Breaking Up Your Code

So long you have been writing your programs in one piece. You are totally allowed to
carry on with this practice, however, lumping everything in one piece is often considered
undesirable for the following reasons:

Easeof maintain A single source le with tens of thousands of lines is for sure not easyto
maintain. First, navigating around in the source le is messy— page up and page down keys
are unlikely to be effective for les of this size and to locate a certain section of code much
traversal is necessary

Variable Conicts Variable managementis not atrivial affair in practice when the program
is alargeone. It is easyfor usto keep track of the variables in use for short programs we have
beenwriting for now, but shortly when the code basegrows in size, it becomesincreasingly
likely that variable name clash occurs at certain parts of the source code. That is, you use a
variable that is de ned somewhere elsebut you are unaware of it. This may give rise to some
unexpected behaviour that are dif cult to debug. Object-oriented programming is a desirable
solution. We would discuss the concepts of scope and packages,which are fundamental to
object-oriented programming that would be covered in the next chapter.

5.1.1 Sourcing External Files with require()

The require() function can be used to source in external les. It actsin this way — when
execution reachesarequire() statement, it rst checksif the le hasalready beenrequire d.
This is to prevent from going into an in nite le inclusion loop (that is, A includes B, and B
includes A etc.).

A stack data structure would help you understand what is going on in the Perl le inclusion
mechanism. Think of a stack as a pile of books lying on your desk. Only two operations are
allowed on a stack, either you place a book at the top of the stack, or you take away a book
from the top of the stack. You are not allowed to insert into or remove from it any books
in the middle. When you run a Perl program, say "A’, from the command prompt the stack
comprises only one le "A' on the stack. When it require s le 'B', 'B'would be added to the
top of the stack, and "B’ starts execution. When "B’ nishes, it is removed from the top so A’

67

68 Chapter 5 Conditionals, Loops & Subroutines

is again at the top of the stack. Now say it tries to require itself, that is "A'. Because'A' is
already presenton the stack it is not allowed to be added to the stack anymore, in order to
break any potential le inclusion loops.

The %INC hash variable contains a list of les included whose key is the path specied as
argument of require() and the value is the complete path. It is used instead of the stack
data structure asmentioned above, but they servethe samefunction. Therequire() function
checksthis hashto determine if the le specied already existson the “le inclusion stack”.

There is another variable @INCthat storespath pre xes the Perl le inclusion system usesto
nd the le to besourcedin. You may type the following command at the command prompt
to output the content of @INC

perl -e print mp {"$_\n"} @NC'

On my Linux system, the list of paths is, in ascending order,

cbki hong@bkih ong: /public_htm > perl -e print mp {"$ \n"} @NC'
fusr/liblperl5/5.8.0/i686-1inux-thread-multi

[usr/libl/perl5/5.8.0

[usr/liblperl5/site perl/5.8.0/i686-inux-t hread-nulti
fusr/lib/perlb/site perl/5.8.0

fusr/liblperl5/site perl/5.6.1

fusr/liblperlb/site_perl

There are 7 entries. The last entry is a single dot denoting the current dir ectory. Note that the
paths listed are likely to be different on each system. They are xed in the Perl installation
process.

require() is an overloaded function serving three purposes:

? If the argument is a number, it checksif the perl interpr eter version ($]) is greater than
the version speci ed asthe argument. This use is generally used in Perl modules to
specify the earliest perl interpr eter version with which the module canbe executed;

? If it is abareword, that is not enclosedin quotation marks, it is assumedto be the pack-
age name of a module with extension “.pm” (seeChapter 7) and any occurrencesof ::'
are converted to */* on Unix-variant OSesor 'n' on Windows or MS-DOS. Theresultis a
relative path to a Perl module;

? If the argument is a quoted string, it is treated as the relative path to the le to be in-
cluded.

For the last two cases,the relative path resulted is appended to each of the paths in @INCin
turn to form a complete path and require() checksif a le existsat this location. The rst le
that is found is used. As you can see,the system modules dir ectories are searched rst, and
at last the current dir ectory is searched.

If the search yields an existing le, the relative path is added to %INC as the key while the
complete path formed asthe value. This prevents further inclusion of this le until it has
nished execution, then the entry is removed from %INC If the sourced le doesnot return a
true value (asarecapitulation — anything other than 0, an empty string or undef), require()

5.2 Scopeand Code Blocks 69

fails with an error. Perl module authors may utilize this characteristic to abort the scripts
using the module in caseof errors.

The description above is a rewrite of the require() manpage. It is easyto understand and
you are advised to read it for further information. In Chapter 7 you would learn the use()
operator which is awrapper of require() and is used to load Perl modules.

5.2 Scopeand Code Blocks

5.2.1 Introduction to Associations

Consider this simple assignment statement:

$fruit = "apple”;

How would you describe this statement? The string “apple” is assignedto the scalarvariable
named $fruit . Fine, this is how the statementis interpr eted literally , but this description is
not suf cient asyou progressthrough the following chapters. A better and more in-depth
way of expressingthis statementis that a data objectwith the scalarvalue “apple” is created,
and the name “fr uit” is now associatedwith this data object. Why do we have to bother with

this expression? Becauseup to now we have been writing programs with each data object
associatedwith one and only one name, which is the name of the variable. However, in this
chapter we would seethat due to scoping rules the samename at dif ferent parts of a program
can be associatedwith different data objects. This association is also known as a binding .
In the next chapter we would introduce to you the possibility of establishing additional

associationsto a data object, which are references. Therefore, from now on you needto have
a clear separation of the data objectand its name associations.

5.2.2 Code Blocks

The idea of intr oducing scopesto variable (arrays and hashesapplies similarly) associations
arose from the fact that not all variables need to be valid throughout the lifetime of the
program. This is particularly important in subroutines, which are self-contained reusable
units containing a sequenceof statements.

The scope of an associationrefers to the region in which the associationis visible. Up to the
present, we have been writing very simple scripts with scalar variables, arrays and hashes
which, once created, could be used anywhere in the script. What we have been using are all
global variables. The excessiveuse of global variables is considered a poor programming
practice, becauseas your program becomesincreasingly complicated, it is not impossible
that your program may involve dozens to even hundr eds of variables. Perhaps you may
need some of them to be accessiblethroughout the whole script, but this is not generally the
case.In particular, many variables are simply used to store data temporarily , for example, as
a counter in aloop (asyou will seelater in this chapter). Intr oduction of scopesis seenasa
cure to the problem, by establishing a scopeand restricting the variable associationto within
this scope.

Scopesare de ned in terms of code blocks, or simply, blocks. A code block simply consistsof
a sequenceof statementsthat forms a unit, and is delimited by curly brackets (but the mere

http://www.perldoc.com/perl5.8.0/pod/func/require.html

70 Chapter 5 Conditionals, Loops & Subroutines

presenceof f gdoesn't necessarilyimply acode block — you will seedo fg and eval fg later
in this chapter that look like blocks, but they are not). Code blocks can be nested. In other
wor ds, one code block can appear in another code block. Like this:

Environment A

{

Environment B

{
}

Environment B resumes

{
}

Environment B resumes

Environment C

Environment D

}

Environment A resumes

As you can see,after f a new environment is started. When g is reached,the current environ-
ment terminates, and the parent environment, that is, the environment that was previously
in effect is reinstated. For example, when environment C terminates, environment B will re-
sume. With my() and local) modi ers that we are going to explorein the next section, you
cancon ne the lifetime of an associationto within the extent of a scope— when the containing
code block terminates, the associationwould be destroyed.

NOTES

Please interpr et the above statement carefully. Although all associations are
destroyed when the current environment terminates, this does not necessarily
mean the objectsthemselves are destroyed. This is related to the garbage collection
mechanism in Perl, which will be covered in the next chapter when we come to
references. In particular, if additional referencesto the object exist, the object will

not be destroyed.

5.3 Subroutines

Breaking up your source code into multiple les is not the only way you can make your
code more manageable. A complex program can be broken into smaller tasks, each of
which carries out a well-de ned function. Take an online book catalogue served in a
typical library as an example, you can actually split the whole complicated program into
smaller parts. For example, theseare the functions that may beimplemented in such a system:

? Seach the catalogue by title, author, keywor ds, etc.
? Allows usersto checktheir circulation record

? Allows usersto reserveor renew items

© 0o ~NOO UL WN P

e e
A WNRO

5.3 Subroutines 71

? Perhaps to send a reminder to a borrower automatically if he forgetsto return the bor-
rowed items on time

You should be able to think of many more, but this already exempli es a program will be
easierto write and manage if you break it up into smaller and simpler parts, with each part
doing its intended task only. This shows how useful subroutines are. A subroutine consists
of a sequenceof statements de ning an environment. There are two types of subroutines
— named subroutines and anonymous subroutines. Anonymous subroutines are not given
a name while named subroutines are. We shall cover anonymous subroutines in Chapter 6
when we come to the topic of references. From now on, by means of subroutines we refer to
named subroutines.

5.3.1 Creating and Using A Subroutine

In general, before we can call a subroutine, we need to declare and de ne it. Declaring the
subroutine makes Perl aware that a subroutine of a particular name exists. De ning means
you explicitly describe what the subroutine does by listing the statementsto be executed if
the subroutine is being called.

In general, subroutine declaration and de nition go together. The syntax used to declare and
de ne asubroutine is asfollows:

sub name [(prototype)] block

block is the subroutine de nition. It is a code block containing the statementsto be executed
when the subroutine is invoked. The restis the subroutine declaration. It declaresa subrou-
tine with the name name. After the subroutine name you may insert an optional prototype

part which contains a concisespeci cation of the types of parametersto passto the subroutine.

Here is an example using a subroutine to calculate the sum of a list of scalars (presumably
numeric):

EXAMPLE 5.1

#[usrlb in/perl -w

sub sum (@ {
This subroutine takes a list of numbers as input
and returns the sum

ny $sum = 0;
for ny $tnp (@) {
$sum += $t np;
}
return $sum
1
calculates 0 + 1 +2 + ... + 100 and prints the val ue

print sumO0 .. 100; # nust be 5050. No doubt .

Lines 3-11 contain the declaration as well asthe de nition of the subroutine sum() . Line 3
tells Perl that you are declaring a subroutine named sum, while lines 4-10are the subroutine

72 Chapter 5 Conditionals, Loops & Subroutines

de nition. Subroutines have to be declared and de ned before being called in the script. If
you place the print statement (line 14) before the subroutine declaration, your script simply
won't work as expected. This is becausethe perl interpr eter reads your script sequentially.
If it encounters the token sum before it is declared, Perl will not know sum is a user-de ned
subroutine asPerl cannot nd it in the systemlibraries. That implies you should, in principle,
always put subroutine declarations and de nitions very early in source les. As you can
seein the example, the subroutine is put before the source program that calls it. However,
this may not be convenient sometimes. For example, when you have multiple subroutines
which are inter-dependent on one another, it may not be convenient for you to nd out
a proper order of declaring the subroutines. Therefore, Perl allows you to make forwar d
declarations, at which point the subroutines are declared but not de ned. Forward decla-
rations are put at the very top to declare the subroutines, and somewhere later on you give
the de nitions for the subroutines concerned, which canthen be placed in any order. In the
example, in order to make aforwar d declaration of the sum subroutine, it canbe made like this:

sub sum(@);

This statement tells Perl in advance (before parsing the subroutine de nition) that sumis the
name of a subroutine accepting avariable number of scalarsasarguments, and Perl will know
to look for the de nition of sumin the later part of the program. The forwar d declaration is
the same asthe declaration line exceptwe replacethe block containing the de nition with a
semicolon.

Although you may not understand the my modier and the for loop in the script at the
moment, you may ask a question: why do | have to resortto subroutines if | canimplement it
directly with afor loop or aforeach loop? Well, note that the subroutine sum servesa general
purpose. It adds up all the input values and return the result, regardless of the values of the
input. Therefore, this subroutine is highly versatile and exible — it can be used directly
without modi cation on any occasionyou would like to evaluate the sum of a list of scalars.
If you write the script asfollows, it canonly be usedto sum up all the integers between 0 and
100. Whenever you would like to evaluate a sum of something else,you have to rewrite the
code:

calculates 0 + 1 +2 + ... + 100 and prints the val ue
my $sum = 0;
for ny $tnp (0 .. 100) {
$sum += $tnp;
}
print $sum

By writing your code in subroutines, you are enforcing reusability of your code. Code
reusability is important aswe wouldn't like to write similar piecesof code again and again.
Later on you will learn how to build reusable modules where you can put your subroutines
and savethem asa le sothat whenever you needto use the subroutines in another project,
you just need to import the module, and the subroutines can be reusedin your new project.
This is very convenient. Hereis how the sum subroutine canbe readily applied to evaluate the
sum in other situations:

print sum values %score; # print the sum of the values of %score
$avg = sum(@nums)/@nums; # evaluate the average of the values of @nums

5.3 Subroutines 73

Apart from improved reusability, subroutines also help make debugging easier Once we
are certain that a subroutine is correct, we can safely apply it. It is likely that fewer number
of errors would be committed when we combine the subroutines to form an entire program
than writing it without using any subroutines.

Unlike other languageslike C or Java,Perl doesnot support nhamed parameters. All incoming
parameters are combined into one indistinguishable array @. The rst parameter is thus
$_[0] . Therefore,if you have a mixtur e of arrays and scalarsthe elements of which would be
combined into @. You may use pass-by-referenceto be discussedin the next chapter to avoid
it.

Also, note that the elementsof @ are not copied by value. The elements of @ are “r eferences”
to the data values. They behave like referencesbut do not look like referencesin terms of
syntax. Basically, the idea is when you modify avalue of an elementin @, the corresponding
data objectwill be modied aswell. Consider this example:

sub test {

(1, 2, 3);
ny $b = 4;
test(@a $h);
print join(', ', @a $b), "\n"; #1, 2, 5 6

Here, when the third as well as the fourth element of @ are updated, the corresponding
elementsin @aand $b will be modi ed. What if we replace$b with the literal 4? Now because
the data object cannot be modi ed, it will be an error. In principle, changing the value of
parameters silently in a subroutine is a bad programming practice, although sometimes you
cannot avoid it. You should document these casesclearly, for example, as comments in the
source les.

Becausea parameter can be inadvertently modi ed in a subroutine, in general, you should
not use the elementsof @ dir ectly in scripts. You can usethe following technique:

sub search {
ny ($nyitem @yarray) = @;
use $nyitem and @wyarray thereafter
...

}

ny @rray = (1, 2, 3);
ny $searchFor = 2;
search($ searchFor, @rray);

By using the my modi er , $myitem and @myarray are con ned to within the search subroutine
only. Here, the elements are copied by value to $myitem and @myarray. Therefore, the tie
between them and the original data objectsno longer exists. Evenif you inadvertently modify
the values or $myitem or @myarray, the changeswon't be made to the original data objects.
Mor eover, this emulates named parameter passing in other programming languages.

74 Chapter 5 Conditionals, Loops & Subroutines

A subroutine may return a list of values to the caller. As shown in Example 5.1, this is
achieved by the return function. A subroutine may return a scalaror alist of scalars. Similar
to the casefor incoming parameters, multiple arrays or hashesare combined into one single
list. Again, you may use referencesto circumvent this, though.

5.3.2 Prototypes

Recall that while declaring a subroutine you may put an optional prototype speci cation. It
describesthe number of aswell asthe type of parametersin a compact form. The prototype
gives Perl a clue asto how the arguments should be handled. Having an accurate grasp of
the types of arguments expectedis important, asillustrated in amini casestudy below.

The prototype speci cation comprises a sequenceof symbols indicating the type of each
argument. The symbols should look familiar to you, becausethey are the same symbols
which are used to denote scalarvariables, arrays, hashesetc. In front of eachsymbol you may
prepend a backslashn to indicate the element is to be passedby reference. This is covered in
the next chapter.

Symbol Type
$ Scalarvariable
@ Array
% Hash
& Anonymous subroutine
* Typeglob (Referenceto Symbol Table entry)

For example, if the prototype is ($$) , that meansthe subroutine acceptstwo scalar variables
as parameters. ($$@) implies the rst two parametersto be evaluated in scalar context while
the remaining parameters would be grabbed by an array variable. Note that you cannot
have something like (@$) asthe array variable (or hash variable alike) would take up all the
input parameters. Always bear in mind that multiple parameters, after evaluating in their
respective contexts, are combined together to becomeone indistinguishable array @.

A “programmer” who claimed to know Perl was asked by his bossto write a subroutine
which inserts a list into an array at a certain position. There is already a splice() ~ function
which can do that for him, so he decided to write a wrapper which calls splice() to do the
job. The boss,asa user, would like to usethe subroutine in this format:

insert @array, pos, list

which is identical to the syntax of splice() except without the length parameter. The
“pr ogrammer” wr ote this:

sub insert {
WARNING! This does NOT work!
my (@myarray, $pos, @listy = @_;
return splice(@myarray, $pos, 0, @list);

}

Without eventrying it, he handed it to his boss. The bosstried to useit in this way:

5.3 Subroutines 75

@array = (1, 2, 3);
insert(@array, 3, 4, 5 6);

It didn't work, and he lost his job. Doesthat sound too stupid for you? Why doesn't it work?
As | have reiterated a number of times already, becauseall the parameters are combined into
a single list when they are passedto the subroutine. You can't really separatethem back into
the three parameters, becausethe rst argument is an array which due to its “gr eediness”
would take all the elements passedinto the subroutine, leaving $pos and @list unde ned.

The proper way to do this is:

sub insert (\@$@) {
my ($array, $pos, @list) = @_;
return splice(@$array, $pos, 0, @list);

It uses both pass-by-reference with a prototype added to make the types of parameters
expected explicit. The use of @$array causesthe original array to be modi ed, aswe'll cover
in the next chapter. As for the prototype, we indicate the parameters are an array reference,a
scalarand then alist. If asubroutine hasa prototype, Perl will try to evaluate the parameters
according to the prototype. Consider the caseif the bossusesthe subroutine in this way:

@array = (1, 2, 3);
insert(@array, @array, 4, 5, 6);

This is identical to the previous case. Note that in the prototype the second parameter
indicates a scalaris expected. Therefore, a scalar context is put around @array which causes
the number of elementsin @array to be passedasthe second parameter, which causesthe list
speci ed to be appended to the end of the @array .

You can also specify optional parameters. Compulsory parameters are separated from op-
tional parameters by adding a semicolon in between. For example, say you have a subroutine
whose declaration statementis sub mysub ($$;$$); , and you make the following subroutine
call:

mysub @array, "3", 9;

Because@array is evaluated in scalar context, @ is the list (scalar(@array), "3", 9). The
fourth parameter is empty. By using prototypes you can let Perl check parameter types and
evaluate the parametersin the correct contexts.

A sidenote about subroutine invocation. Traditionally , subroutines had to be pre xed with
the & symbol when invoked, and the parenthesesare compulsory in this case. For example,
&mysub(@array, "3", 9); When a subroutine is invoked in this way, the prototype is
ignored. Therefore, | recommend not to use the & form in general. A few situations where
you needto usethe & form will be covered in the next chapter.

© 00O ~NO UL WN P

NNNNRERRRRRRRRR R
WNRPOWO®OWNOOUMWNERERO

24
25
26
27
28
29
30
31

76 Chapter 5 Conditionals, Loops & Subroutines

5.3.3 Recursion

Recursion is more of atechnique rather than afeature of a programming language. It refersto
the practice of tackling a problem through dividing it into smaller sub-problems and tackling
them independently. Each of these sub-problems may also be subdivided if necessary In
programming languages, recursion is typically achieved through nested invocation of a
subroutine, directly or indir ectly. We'll examine recursion with the help of an example.

A palindr ome is a sequenceof charactersthat is identical regardlessyou readit in a forward
or backward direction. For example, “dad” and “sees” are examples of palindr omes. Here,
we tackle the problem of determining whether a given string is a palindr ome. For simplicity ,
we only consider strict palindr omes that are symmetric character by character. Phraseslike
“Madam, I'm Adam” are generally considered palindr omes, but we don't classify them as
such.

There are (at least) two ways to tackle this problem, namely the iterative and recursive
approach. First, we presentthe source program for the iterative approach:

EXAMPLE 5.2 Palindr ome

#! [usrlb inlperl -w

Determning whether a given string is a palindrome.
(lterative approach)

sub i sPalindrome($);
print "Enter a string > ";
chonp(ny $str = <STDI N>);
if ($str ne"") {
print "$str is
} else {
print "The string should not be enpty!\n" ;

, isPalindrone($str)?"":"not ", "a palindrome.\n";

}

sub isPalindrome($) {
ny $string = $[0];

0;
l ength($string)-1;

ny $ctr_|
ny $ctr_r

while ($ctr | <= $ctr_r) {

To do case-insensitive conparison, convert both to |owercase if {
appl i cabl e

ny $leftchar = Ic substr($string, $ctr_I, 1);

ny $rightchar = Ic substr($string, $ctr_r, 1);

if ($leftchar ne $rightchar) {
return O;

} else {
Sctr | ++;
$ctr r--;

32
33
34

© 0O ~NO UL WNBE

W NDNDNDNNDNMNNMNNMNMNNMNNRPRPRPRPRPEPRPEPRPERPRPREPER
O WO NOOULPA,WNPFP OOOONO OPM~WDNE,O

5.3 Subroutines 77

}

return 1;

}

Then the recursive approach:

#/usr/b in/perl -w

Deternining whether a given string is a palindrone.
(Recursive approach)

sub i sPalindrome($);
print "Enter a string > ";

chonp(ny $str = <STDI N>);
if ($str ne'") {

print "$str is ", isPalindrome($str)?"":"not ", "a palindrome.\n";
} else {

print "The string should not be enpty!\n" ;
1
sub isPalindrone($) {

ny $string = $[0];

A standal one character or an enpty string are by definition symretric.
This signifies the deepest recursion stack possible.
if (length($string) <= 1) {
return 1;
}
Here, what we need to do is to examne the first
and | ast character, and invoke a new i sPalindrone
to deduce whether the string in the mddle is a palindrone.
ny $leftchar = Ic substr($string, 0, 1, "");
ny $rightchar = lc substr($string, -1, 1, "");
return $leftchar eq $rightchar && isPalindrone($string);
!

The only part of concern is the subroutine de nition of isPalindrome() . In the iterative
approach,two pointers are maintained which initially point to the rst and the last character,
respectively. A loop is setup which iterates asthe pointers move towar ds each other. When
an unmatched character pair is found the value 0 is returned, which signies the string
is not a palindrome. Finally, when the positions of the left pointer and right pointer are
swapped, that implies the entire string has already been scanned through and all character
pairs matched (or 0 would have been returned), so we can then conclude the string is a
palindr ome.

The logic behind the recursive scheme,however, seemsto be cleaner and more intuitive. In
the iterative approach, a single isPalindrome() invocation tackles the whole of the problem.
However, the recursive approach suggeststo break this problem into multiple levels. At
eachlevel, we merely compare the rst and last character of the incoming string. The string
in the middle is passedto a new invocation of isPalindrome() to deduce whether it is a
palindr ome. In other words, we de ne that a palindr ome is one whose rst and last character

78 Chapter 5 Conditionals, Loops & Subroutines

are identical and the substring in the middle is also a palindr ome. If both conditions are
satis ed we conclude the string is a palindr ome; otherwise, it isn't.

Lines 21-23in the recursive example handles the casewhen the incoming string is a single
character or an empty string. In recursive schemesone always need to consider the caseat
which point recursion should stop. Recursion should not be allowed inde nitely (and in fact,
you should avoid recursions of many levels, say possibly 5000levels deep becausein practice
the stack size is limited and you actually create an entry on the call stack as you recurse.
Exceedingthe limit resultsin astackover ow error). Note that asrecursion proceeds,the rst
and last character are being taken off of the string before passing to a new isPalindrome()
invocation. Therefore, there must be a level at which the incoming string is either a single
character or empty, depending on the number of charactersin the original string speci ed by
the user. Also note that the ordering of the two conditions on line 29 is signi cant. Because
if we nd that the border character pair doesn't match, we can already claim the string is
not a palindr ome without having to test the string in the middle. | used the short-circuiting
property of &&to achieve this. If you swap the two conditions, then recursion must always
have to proceedto the deepestlevel and the testis only carried out just before you exit from
eachlevel, which is just a waste of time.

Depending on the problem nature, recursion may be a better solution compared with an
iterative approach. For example, a program which searches through a directory structure
(say, search for certain les on the hard disk) is nearly always implemented by a recursive
scheme becausedir ectory structure is hierarchical, or in other words, nested by its very
nature. Becausethe number of nested levels is not known in advance, an iterative schemeis
unlikely to be appropriate.

5.4 Packages

When you split your code into multiple les, Perl provides a nice mechanism to ensure that
variables in different parts of your program do not clash. The mechanism is to divide your
program into different namespaces The idea is very simple — each namespacehas a label
which uniquely identi es the namespaceand we prepend to variable namesthe label so that
we candifferentiate in casetwo variables in two namespaceshappen to have the samename.
C++ usesthe notion of namespace while in Perl terminology a namespaceis called a package
instead.

Any variables not explicitly contained in any packagesbelong to the main package. Therefore,
all variables we have beenusing in fact belong to the main package. By declaring additional
packageswe create shields so that variables in different packageswould not interfer e with
eachother. Packagesare fundamental to object-oriented programming becauseeachobjectis
intended to be a self-contained unit.

5.4.1 Declaring aPackage

A package extends from the package declaration up to the end of the enclosing code block,
the closing bracket of eval() (seechapter ??) or the end-of- le (seethe perimod manpage),
whichever comes rst. To declare the start of a package, put

5.4 Packages 79

package package _name;

Usually package declarations are placed at the beginning of source les to ensure that all
variables in the le are protected. For example,

#!/usr/bin/perl -W
package Apple;
Package extends to the end of the file

If a package declaration is placed inside a code block, the package extends to the end of the
code block:

#!/usr/bin/perl -W

"main’ package

{
package Apple;

package ‘'Apple’ extends to the end of the block
$var = 3;

}

‘main' package

To avoid any misconceptions that may arise as you read on, | would like to remind you
that packagesappearing inside code blocks, such asin the example shown above, continue
to exist after the block is closed. Always bear in mind that packagesare only intended to
prevent clashing of namespaceinadvertently. It has nothing to do with scoping. In the
above example, the variable $Apple::var still has the value of 3 after the containing block
terminates. This is not the casefor local() variables, though, which we will cometo shortly.

Note that a package may be declared within the extent of another package. As illustrated in
the above example, the "Apple' packageis declared within the extent of the ‘main' package.
Therefore, you candeclare an “Orange' packagewithin the extent of the "Apple' package,and
eachpackage protectsthe variables within its respective extent. By convention, the rst letter
of a packagename is capitalized, exceptthe ‘main' package.

5.4.2 PackageVariable Referencing

If you omit the package name when referencing a variable, e.g. $somevar , it refers to the
variable inside the current package. This also applies to variables in the main package.
Therefore, by not explicitly declaring any packages in previous chapters we have been
referring to variables in the current package,that is, the main package.

If you needto referto a packagenot contained in the current package,you needto qualify the
variable with the package name prepended, with :: ' asthe package separator. Therefore, to
refer to a scalarvariable $var in the apple namespaceyou need to write $apple:var . If the
package name is empty but contains the package separator, e.g. $::var , the main packageis

80 Chapter 5 Conditionals, Loops & Subroutines

assumed.

Becauseyou need to explicitly qualify a variable with the package name if you have to refer
to it in another package, you will not modify it inadvertently unless that is your intention.
That is exactly how namespaceswork.

There is also an old syntax of using a quote instead of double colon for referring to package
variables, for example, $orange'var . This syntax may be deprecated in futur e versions of
Perl. However, becauseit will be interpolated in double-quoted strings, you should beware
of strings such as “$people's pen”. You should disambiguate by putting a pair of curly
bracesaround the variable name, such as* $f people g's pen”.

5.4.3 PackageVariables and Symbol Tables

Note: Dif cult materialaheadUnderstandingof this sectionis not compulsoryfor practicalPerl programming
nowadays.You maywish to deferthis sectionuntil you needit.

Each package in Perl maintains its own symbol table. A symbol table keeps track of a list
of symbols de ned in the current package and their memory locations at which they can be
found. For non-lexical variables (that is, those declared with the my modi er) Perl needsto
keep track of them becausethey are not con ned to any scopes. You may accessthe symbol
table of a packagethrough a hash whose name is the name of the package, followed by two
colons. For example, the hash representing symbol table of the main packageis %main:: . The
keys of the hash are the names of symbols de ned in the package. The corresponding values
is a scalar representing an internal data structure of Perl known asa typeglob which in turn
holds the referencesto the actual symbols.

To help you understand it, consider the @INCarray that we described earlier in this chapter.
This array is one of the prede ned variables in Perl that is automatically listed in the
symbol table of the main package. Therefore, there exists a key "INC' in %main:: , that is,
$main:: f'INC' g. The value is a typeglob which holds alist of referencesof symbols with the
name INC, that is, @INCand %INC The typeglob is represented by *main::INC . The typeglob
has a number of slots, each of which storesthe referencesof a dif ferent type such as scalar,
array, hash, anonymous subroutine, lehandle and typeglob (which is just a reference to
itself). If there isn't a symbol of one type, the corresponding slot is simply null. You can
accesghe referenceof @INCand %INCthrough the symbol table with a so-called *foof THING g
syntax. In this example, that are *main::INC f ARRAY and *main::INC f HASH) respectively.

Typeglobs were mainly used for parameter passingin earlier versions of Perl when references
were not yet in the Perl language. In the next chapter you will be taught on how to use pass-
by-referencefor parameter passing. You may wonder why | need to mention typeglobs at all
if it is no longer actively used. First, in order for you to understand how local or package
variables work, you'll needto know what a symbol table is. And, becausethe entries in a
symbol table are representedby typeglobs, it is dif cult for me not to mention typeglobs at all.

5.5 Lexical Binding and Dynamic Binding

We have already learned how to de ne environments in a program by establishing code
blocks in Section 5.2.2 Subroutine de nition is also placed inside a code block so it also

g b~ WN PP

5.5 Lexical Binding and Dynamic Binding 81

de nes an environment in itself. However, | have not yet explained how you canrestrict an
associationto within a certain scope.Recallthat all variables we have beenusing are package
variables. Once declared, package variables continue to exist in the symbol table as long
asthe program is running. Before we go into the details of the two types of bindings with
respectto associations,let us rst examine the general conceptof referencing rst.

Let's executethis program on your system:

for (keys %min::) {
print $_, " =", $main::{$}, "\n";
}

$abc = 3;

The generated lines that are of interestat this point are shown below, with others omitted:

stdin = *main::stdin
ARGV => *mai n: :ARGV
INC => *main::l NC
ENV => *main: .ENV
abc => *main::abc

The above code dumps the content of the symbol table. On the left of the arrow are the
names of the symbols, while on the right are the corresponding typeglobs. What appears
to be interesting is that an entry for abc exists in the symbol table, regardless of the fact
that the statement which assigns 3 to $abc has not yet been executed at the instant the
symbol table dump is made. The reasonis that a compilation step, despite invisible to
users, was performed before the actual execution which scans the whole program for
package variables which are then added to the symbol table. Therefore, before the program
is actually executed the symbol table has already been constructed. As noted previously,
a symbol table keeps track of the symbols that appear in the program. By doing so, the
runtime environment (for example, the perl interpr eter) prepares a list of symbols at an
early point in time which facilitates it to arrange for storage spacein the memory and, most
importantly , to preparefor referencing operations that occur during execution of the program.

Whenever a symbol appearsin a program, a referencing operation is required to be carried
out during execution to deduce which data object is associatedwith the given symbol. For
example, when the statement $abc = 3 in the program above was executed, the runtime
environment needsto nd out which data objectis associatedwith the scalar variable $abc.
It may happen that there are multiple scalar variables of the name abc but the name should
be associatedwith exactly one of them at any instant. The goal of a referencing operation is
to locate this association.

Referencing has been made complicated becauseof the presenceof scopes. Without scopes,
referencing is easy becausethere can be only one variable of a certain name in eachpackage.
For example, throughout the duration of a program there can be one and only one scalar
variable $Apple:zvar in the Apple package. $Orange:ivar is already a different scalar
variable and do not interfere with $Apple::var at all. Therefore, throughout the program all
referencesto $Apple::var always refer to the samedata object. However, this may not apply

00 ~NO O~ WN P

82 Chapter 5 Conditionals, Loops & Subroutines

to those variables which are con ned by scoping rules. In Perl, two major types of scoping
rules are supported, namely lexical scoping and dynamic scoping. Both scoping systems
base on de nition of scopessuch as code blocks, but the way referencing is performed is
dif ferent.

Most modern programming languages only support lexical scoping. An association that is
lexically scoped is visible from the point in the environment in which it is de ned, and all
environments that appear inside the extents of that environment, until when another lexically
scoped variable with the same name appears in those environments. In Perl, a variable
declared with the mymodi er is lexically scoped. Consider this example:

ny $a = "Hello ";
{
$a .= "Wrld\n";
print $a; # Hello Wrld
ny $a = "Bye!\n";
print $a; # Bye!
}
print $a; # Hello Wrld

When execution proceedsto line 3, Perl needsto nd out which data object $a refersto. At
this instant, the current environment, that is the code block between line 2 and 5, is known as
the local referencing environment . Perl rst nds out that up to this point thereis not any
lexical variable with the name a in the local referencing environment. As local referencing
fails, the referencing operation proceedsto search for one in the nonlocal referencing
environments , by proceeding all the way up through parent environments. Here, we nd

a lexical $a in the parent environment, and the data object associatedwith that variable is
used. Therefore, the string “World nn” is appended to the scalarvalue held by that data object.

However, on line 5 a new lexical $a is declared at this point. Therefore, referencing operation
performed at line 6 resolvesto this lexical. Note that the lexical in the parent environment
is untouched. It is described as being hidden . When the code block terminates, all local
associations are destroyed. Becauseof the reference-basedgarbage collection mechanism,
the data object associatedwith the lexical on line 5 is also destroyed. Lexicals that were once
hidden are visible again. Therefore, the last print() outputs “Hello World”.

my() expectsascalaror alist asits argument. We have seena scalarused asthe argument in
the examples. Using a list asan argument with optional assignmentlooks like this:

my ($a, $b) = (Hello', "World");

If the variable list is not assigned,then they are given the values of undef .

Lexical scoping models are recommended for several reasons. First, the use of lexical
variables is faster compared with dynamically scoped ones. That is becauselexical scoping
can be solely determined from the nesting of code blocks, which is already xed during
the compilation phase. Therefore, referencing of lexical variables can be performed during
compilation instead of at runtime. Dynamic scoping, on the other hand, also takes into
account the dynamic factor of subroutine invocations. In Perl, local() variables are dy-
namically scoped. As the use of dynamically scoped variables share similar problems as
global variables in other programming languages, and the scope is dependent on the call

© 0O ~NO UL WDNP

=
N R O

© 0O ~NO UL WN PP

e e
W N RO

5.5 Lexical Binding and Dynamic Binding 83

stack which is determined by how the program calls subroutines at runtime, they makes
debugging more dif cult, and arerelatively slower.

my variables are never listed in the symbol table. This fact is important asyou go on and learn
how to use typeglobs.

Dynamic scoping, on the other hand, is based on the call stack instead of nesting of envi-
ronments. In Perl, local() variables are dynamically scoped. Thesevariables are package
variables and appear in the symbol table of the respective packages. The idea is, when a
local variable is declared, the current value as can be accessedthrough the symbol table is
saved temporarily in a hidden stack, and a new data objectis createdto hold the new value.
When the current environment terminates, the current symbol table entry is removed, and
the value that was previously savedis reinstated. Consider this example:

sub greeting {

print $a; # Bye!
}
$a = "Hello ";
{
$a .= "Wrld\n";
print $a; # Hello Wrld
local $a = "Bye!\n" ;
&greeti ng;
}
print $a; # Hello Wrld

This is similar to the example | used above to intr oduce myvariables in Perl, exceptnow local
is used and the secondprint is put in a subroutine. On line 9, the original symbol table entry
for $a (with the scalar value “Hello World”) is replaced with a newly created data object
whose value is “Bye!”. In the subroutine greeting() , because$a cannot be resolved in the
local environment, the symbol table entry is used, and therefore “Bye!” is displayed. When
the block terminates, the original symbol table entry saved is reinstated. Therefore, the value
print ed is “Hello World".

There are a few points to note here. Here is a slightly modi ed version of the above program
for illustration:

ny $a = "Hello ";
sub greeting {
print $a; # Hello World!!!!
}
{
$a .= "Wrld\n";
print $a;
local $::a = "Bye!\n";
&greeti ng;
}

print $a;

84 Chapter 5 Conditionals, Loops & Subroutines

When you run this program, you would nd that all threeprint() result in the string “Hello
World” being displayed. The reasonis that during compilation phase all referencesto $a
within the lexical scope have already been associatedwith the lexical variable. If you swap
the positions of the lexical variable declaration and the subroutine, you will nd that the
local() ized packagevariable $a is print ed in this case.

Also, asshown on line 10,when you try to local() ize avariable when alexical variable of the
same name exists, you have to explicitly use the double-colon form to indicate the package
symbol table entry. That is because,as explained, $a is tied to the lexical variable and trying
to local ize alexical variable is aruntime error.

Apart from a package variable, you canlocal ize a member of composite type. For example,
you can have

local $ENV{PATH} = ''home/cbkihong/bin "

which causesthe original value to be saved and temporarily replacedby the new given value.
When the environment terminates the original value is restored.

Becauseof potential confusions that may arise when you uselocal variables, oneis generally
not recommendedto uselocal variables.

5.6 Conditionals

A programming language is practically not useful if the statements are only allowed to run
from the very rst line to the last. Therefore, in this section we are going to talk about loops
and conditionals.

You have used the comparison and logical operators in the previous chapter. By using
conditionals, you can specify a block of code to be executed if a particular condition (test)is
satis ed. This is what conditionals exactly do.

The if-elsif-else structur e is the most basic conditional structure. The general form is:

if (EXPR) BLOCK1
[elsif (EXPR2 BLOCK2]
[else BLOCKnN]

The parts in square brackets denote the optional parts. The if-elsif-else structur e works
asfollows: if EXPR1evaluatesto true, statementsin BLOCK1 are executed, and the remaining
elsif or else parts are bypassed. Otherwise, Perl jumps to the next elsif or else part, if any.

Perl goesto the elsif part if the previous condition is not met (i.e. false). If EXPR2evaluates
to true, BLOCK?2 is executed and the remaining parts are bypassed. There can be as many
elsif parts asyou like, and Perl will test eachcondition successivelyuntil any test evaluates
to true. The else part is placed at last, handling the situation when all the previous tests
failed. The BLOCKn will be executedin this situation.

© 0O ~NO UL~ WNPE

el I s el =
o UD WNRE O

5.6 Conditionals 85

Figure 5.1 presents the owchart showing the sequence of actions performed inside an
if-elsif-else conditional structure.

If Block 1
Block_ 2
elsif false
@ true Block_n-1
false
else > Block_n
I

v

Figure5.1: If-elsif-elseé-lowchart

The following is a simple program in which the user inputs a number, and the program
deduceswhether it is an even number, odd number or zero.

EXAMPLE 5.3

#! [usrib inlperl -w

$nuntype = "";
print "Please enter an integer > ";
chonp($num = <STDI N>);

if ($num %2 == 1) {

$nuntype = "an odd nunber.";
} elsif ($num == 0) {

$nuntype = "zero.";
} else {

$nuntype = "an even nunber.";

}
print $num. " is " . Snuntype . "\n";
This program has all the three parts, forming a complete if-elsif-else structure. Because

0 is customarily considered neither odd nor even, we have taken this special case into
consideration. First it testsif the number is odd by checking if the modulus (remainder) is 1.
If this is true, line 9would be executed. Otherwise, it jumps to line 10to testif the number is
0. If this test fails again, we know for sure that it should be an even number.

© 0O ~NO UL WNPE

86 Chapter 5 Conditionals, Loops & Subroutines

Perl also hasan unless conditional structure. The following example illustrates its use:

#! [usrlb inlperl -w
print "Please enter your age > ";
chonp($in = <STDI N>);
unless ($in < 18) {
print "You are an adult.\n";
} else {
print "You are |less than 18 years old.\n";

}

If you use unless , the senseof the testis reversed. Line 6 is executed if the expressioneval-
uatesto false . If the expressionevaluatesto true , Perl executesthe else part. In fact, the
unless structure is somehow redundant. However, Perl gives you the exibility to do your
job in alternative ways. That is an exempli cation of the Perl motto “There Is More ThanOne
ToDo It". You canreplaceline 5 with

it (($in < 18) {

... or even

if ($in >= 18) {

to achieve the same effect.

5.7 Loops

Sometimeswe would like a mechanism for executing a sequenceof statementsrepeatedly for
a speci ¢ number of times or under a particular condition. A loop is the answer. First, | will
intr oduce the for loop.

5.7.1 for loop

The for loop is inherited from C/C++. The general syntax is
for ([init-expr] ; [cond-expr] ; [loop-expr]) BLOCK

First, the initial expression init-expr is executed. In this part usually a variable would
be de ned that acts as a counter to keep track of the number of times executed. Then the
conditional expressioncond-expr is evaluated. If the expression evaluatesto anything other
than undef , empty string (*”) or the numeric O (i.e. the three scalar values that are de ned as
false), the BLOCKis executed. After the BLOCKhas been executed, the loop-expr is evaluated.
Then, a new cycle starts, and the cond-expr is evaluated again until the cond-expr evaluates
to false, then the loop terminates.

© 00O ~NO UL WN P

e e e
A WNRO

5.7 Loops 87

Loop Terminates

evaluation of execution of

evaluation of

init-expr true BLOCK

cond-expr

\ 4

evaluation of

loop-expr

Figure5.2: for-loopFlowchart

The processdescribed above could best be visualized using a block diagram as shown in
Figure5.2

We would now write a script that prints a special pattern on the screen. It consists of two
isoscelestriangles pointing vertically towards eachother.

EXAMPLE 5.4 Double Triangles

#![usrlb in/perl -w

print "Please input the width of the base (1-50) > ";
chonp($i nput = <STDI N>);
if ($input <1 or $input > 50) {
die "Input must be in the range (1..50)!\n";
}

for ($trend = 0, $i = Sinput; $i <= Sinput; ($trend)?@i+ =2):($i -=2)) {
if ($i ==1or $i ==2) {
$trend = 1;
}
print " " x (($input - $i)/2) . "* x & . "\n";
1

In the example, lines 5-7 handles the caseif the user enters a number out of the range (1..50).
In particular, the die() operator on line 6 outputs the error messagespeci ed to the standard
error (STDERR),which is the screenby default, and then terminate the program.

On lines 9-141 used the for loop to print the asterisks line by line. The $i variable stores
the number of asterisks to be printed at each cycle, while $trend keeps track of whether
you decreaseor increasethe number of asterisks by 2 after eachloop. Initially O is assigned
to $trend , so that the conditional operator decrements $i by 2 after eachloop. The upper
triangle is completed when $i takes the value of 1 or 2, depending on whether the user has
entered an odd or even number. At this point | assign 1 instead, sothat in the next loop $i is
incremented by 2. This loop is repeated until when $i is greater than the width of the base

© 0O ~NO UL WN PP

e e
W N Rk O

88 Chapter 5 Conditionals, Loops & Subroutines

speci ed. In this case,the loop stops.

Note that although line 9 looks a bit complicated and strange, this is grammatically correct.
The init-expr part consists of two expressionsseparated with a comma operator. As you
have learned from the previous chapter, both expressionswould be evaluated while returning
the value of the last expression. However, this return value is actually ignored in this case.

5.7.2 while loop

A for loop is not the only type of loop structure available. Another form of the loop structure
| would like to mention is the while loop. This structureis simpler compared with for loop,
and the syntax of which is asfollows:

while (cond-expr) BLOCK

How does it work? First, cond-expr is evaluated. If it evaluatesto true, BLOCKis executed.
After that cond-expr is tested again, and the loop just goeson inde nitely until cond-expr
evaluatesto false.

5.7.3 foreach loop

Now | would introduce to you another loop structure that works closely with the list data
structure. The general syntax of aforeach loop is asfollows:

foreach [[my] $loop var] (list) BLOCK

In every cycle of aforeach loop, an element from the speci ed array or list (list) is retrieved
and assigned to a temporary local() variable $loop _var, and BLOCKis executed. Looping
continues until all the elementsin list have beenenumerated. For example, if we would like
to checkif a particular element exists in an array, we can use a foreach loop and iteratively
checksif the returned element matchesthe data we are looking for, asin the example below:

#! [usrib inlperl -w

$sear chf or
@onposer s

"Schubert";
("Mozart", "Tchai kovsky", "Beethoven", "Dvorak", "Bach",
“Handel ", "Haydn", "Brahms", "Schubert", "Chopin");
$pronmpt = "$searchfor is not found!'\n";
foreach $name (@onposers) {
if ($name eq $searchfor) {
$pronpt = "$searchfor is found!'\n";
| ast;

}

}
print $pronpt;

As mentioned previously, we should have used a hashin the rst place, but we use a loop
to demonstrate the use of foreach loop anyway. In this example, each of the names in
@composers is compared with “Schubert” in turn, the name we are looking for. The loop

5.7 Loops 89

keeps on going unless the name speci ed is found in the list, or all the elements have been
exhausted without resulting in a match. It is apparent that “Schubert” is in the array, so we
must always obtain a positive result.

In eachforeach cycle, an element from the speci ed list or array is assigned to the scalar
variable speci ed. If the variable is omitted (note that $loop _var is an optional argument), it
defaults to $_. This is a special variable that Perl, in general, assignstemporary data to if no
scalar variable is speci ed in certain operations. This special variable is used quite often in
later chapters, like regular expressions,to shorten the length of the script. However, in my
opinion, although you are allowed to make your scripts shorter by omitting specifying certain
variables in Perl, it may causeyour script to look more cryptic than necessary However,
many Perl programmers use such shorthands, and you should know how to interpr et them,
and this is the reasonwhy | cover this here.

The variable $loop _var is in the form of a local() variable. However, you may want to
restrict it to static scoping (for reasonswhich are to be covered in a later part of this chapter).
In this case,put myafter foreach , asshown in the syntax above.

Some Perl programmers are lazy to type 7 characters for foreach so you may use the
shorthand for instead. Perl can dif ferentiate whether you use the for loop or foreach loop
from the syntax.

Also notice line 10. The last statement is one of the loop control statements. A loop control
statement controls the execution of the loop. In the next subsection we would explore the
loop control statementsavailable in Perl.

5.7.4 Loop Control Statements
Loop control statementscan only be used inside loops to control the ow of execution.
The next statement causesthe rest of the code block to be bypassedand starts the next loop

iteration.

? Forfor loops, loop-expr is evaluated, and then cond-expr is evaluated:;

? Forwhile loops, cond-expr is evaluated:;

? For foreach loops, the next element is taken from list ;

The last statement causesthe rest of the code block to be bypassed and the loop then
terminates. Execution starts at the statementimmediately following the BLOCK

The redo statement causesthe rest of the current code block to be bypassedand the block is
re-executed. Conditional expressionsand loop expression (for loop) are not evaluated. The
content of the loop variable is retained for foreach loops. This statement is seldomly used
in practice. A clever use is to concatenatelines in a le with line continuation characters.
Some programming languages have the notion of line continuation characterswhich allow

© 0O ~NO UL WN P

e e
W N Rk O

90 Chapter 5 Conditionals, Loops & Subroutines

alengthy line to be split over multiple lines. Those languages usually do not have statement
termination indicators (like ; in Perl) and generally use newlines to denote the end of a
statement. In order to split a lengthy line over multiple lines, they require a specic line
continuation character before eachintermediate line break that should not be considered the
end of a statement. In this way, all the lines terminating with aline continuation characterare
concatenated until a newline without any line continuation charactersoccur. For example,
given the following input le:

.Iconfigure --with-features=huge \
--wi th-conpi | edby="Bernard Chan" \
--e nabl e-mul tibyte --enable-xim--enable-fontset \
--e nabl e-gui =gtk --with-gtk-prefix=/usr

(Thisis the con guration commandefoe compilationofthe GVIM editoron my Linux system)

The following code snippet can be used to concatenatesuch lines into one:

open FILE, "<command.txt" ;
while (defined($line = <FILE>)) {
chonp($line);
if ($line = s/\s*\\$//) { # renove line continuation character if any
collapse multiple spaces into one
($_ = <FILE>) = s/"\s*/ [;
$line .= $;
redo unl ess eof(FI LE);

}
no nore continuing lines --- process conbined $line
print $line;

}

cl ose FILE;

This example is taken from the perlsyn manpage with little modi cation and comments
added, becauseit usescertain Perl language featuresthat have not beentaught yet (like regu-
lar expressions).

http://www.perldoc.com/perl5.8.0/pod/perlsyn.html#Loop-Control

Chapter 6

References

6.1 Introduction

We have covered the use of scalarsin the rst few chapters of this tutorial. However,
we haven't covered a very important type of scalar yet - references. Perl references are
prevalently used nowadays, thanks to the of cial support of object-oriented programming
starting from Perl 5. You need to have a good command of referencesbefore heading towar ds
the topic of object-oriented programming.

Referenceslook cryptic from the start. It resemblesthe concept of “pointers” in C/C++,
and “hard links” in Unix lesystems (you may ip to Appendix C for a crash course on
basic Unix). The use of referencesis in some sensea peculiar concept in programming.
However, it turns out to be very useful in parameter passing and serves as the basis for
constructing complex data structuresin Perl (and therefore, it is central to object-oriented
programming in Perl). Towards the end you will also learn to use typeglobs in your
programs. Typeglobs were used to pass data structures to and from subroutines when
referenceswere not yet available in earlier versions of Perl. Today, they have been largely
supersededby references,and the sectionon typeglobs is presentedfor your information only.

6.2 ReferencesPrimer

A referenceis a special form of scalar variable that stores the location (address)of a data
structure. Fundamentally, when something needs to be stored in the memory, a memory
addressis required. It is only with the knowledge of the addressof the object that we can
accessit. This is synonymous with your postal addressin mail delivery, or your IP address
for packet routing on the Internet.

6.2.1 Creating a Reference

To createareference,pre x the noperator to the data object. For example,

$a = \100;

This createsa reference variable $a that points to a newly created data object which holds
the literal 100. If the memory addressof the data object is stored is at location 0x8101B8C,
the reference $a would have an rvalue of 0x8101B8C. The following diagram is a pictorial

91

92 Chapter 6 References

representation of the situation. Note that the memory addressvaries from system to system,
and becauseof the relocatable nature of processesthe addressmay probably vary on every
execution. | just made it up here for the purpose of illustration.

0x8101B8C

Figure6.1: ScalarRefeence

In the diagram, the association is represented by a solid arrow. The real data object is
represented by a cloud shape while the reference by a rectangle. You can further create a
reference$b which points to $a, by

$b = \$a; # scalar reference

0x8101B8C

Figure6.2: A Chainof ScalarRefeences

Apart from referencesof scalars,you can also createreferencesof hashes,arrays, subroutines
and typeglobs. Subroutine reference (or code reference/anonymous subroutines) and
typeglob referencewill be revisited afterwards.

Sarrayref = \@array; # array reference
$hashref = \%hash; # hash reference
$coderef = \&subroutine; # subroutine reference
$globref = *typeglob; # typeglob reference

Though appearing awkwar d to do so,you may createa chain of referencesin one go without
involving intermediate variables by pre xing multiple backslashesto the data object. For
example, the above two statementsare functionally equivalent to:

$b = \100;

Be careful of enumerated lists asa special case!As indicated on the perlref manpage, taking a
referenceof an enumerated list evaluatesto alist of referencesof the list elements:

@list = \($a, $b, $c); # Actually (\%a, \$b, \$c)

@list2 = \($a, @b); # Actually (\$a, \$b[0], \$b[1], ..)
Actually \$c. Remember list operator in scalar context?
$scalarref = \($a, $b, $c);

6.2 ReferencesPrimer 93

Recallthat in an enumerated list all arrays or hashesare expanded to the constituent elements
to form a single list. To create a referenceto an enumerated list dir ectly without creating an
intermediate array rst, which is called an anonymous array, enclosethe list in [] instead:

$listref = [$a, $b, $c];

Similarly, to construct an anonymous hash, enclosethe key-value pairs in f ginstead:

$hashref = {
'keyl' => ‘valuel,
'key2' => 'value2',
'key3' => 'value3,

3

Becausea referenceis simply a scalar value, elements of an anonymous array (or values of
anonymous hash) can also be a hash referenceor array reference. In this way, we will be able
to implement some complex data structureseasily, which we shall explore later in this chap-
ter aswell asin the next chapter when | intr oduce object-oriented programming. For example,

$hashref = {
'values' = |

],
'device' => 'screen’,
‘options' = {
‘indent’ => TRUE,
‘color’ => 'OxFFFF00',

3

which createsan anonymous hash containing threekey-value pairs. The values key maps to
an anonymous array, while the options key maps to an anonymous hash. The device key
maps to a simple scalar string.

References to subroutines behave like functors in C. They can be created in two ways.
The rst way is to prepend n& to the name of the subroutine. The & is required when you
are referring to the name of a subroutine. For example, if you have a subroutine named
somesub() you cantake areferenceto it by n&somesub.

You can also create an anonymous subroutine directly, by using sub without specifying the
name of the subroutine:

$subref = sub {
This is a subroutine

3

94 Chapter 6 References

6.2.2 Using References

If you try to print() a reference variable, the type as well asthe memory location will be
displayed, for example CODE(0x814f3a0) for an anonymous subroutine.

Once you have the reference variables, you may dereference them to accessthe underlying
data objects. To dereferencea referencevariable, simply put a pair of curly bracesaround the
referencevariable and prepend it with the symbol which stands for the underlying type. For
example, to dereferencethe referencevariable $a in our earlier examples, we can write $f $ag.
Other examples:

@array = @{$arrayref}; # array

$scalar = ${$arrayref}[0]; # Return the first element of array above

%hash = %{$hashref}; # hash

$scalar = ${$hashref{'’KEY'}; # Return the value whose key is 'KEY' of hash above
&{$coderef}('a’, 'b; # subroutine invocation

In general, you can omit the curly bracesaround the reference variables in dereferencing
operations. Situations that require them will be described at a later time.

You can also dereference multiple levels deep. For example, consider the chain of references
$b we saw at the beginning of this chapter, we can accessthe data object which holds the
literal 100by dereferencing it two times, by

$a = \100;
$b = \$a;
print $$$b; # prints 100

However, creating a referenceto a literal makesit read-only. For example, trying to modify
its value in dereferencing is aruntime error:

$a = \100;

$h = \$a;

$$$b = 90; # same as $$a = 90

Modification of a read-only value attempted at test.pl line 3.

Becausethe value pointed to by $a is read-only, we can only change it by creating a new
literal of the desired value, and point $a to it instead. $b would now re ect the new value
when dereferenced:

print "Before reference \$a changes: $$$b\n";
$a = \200;
print “"After reference \$a changes: $$$b\n";

The output is

Before reference $a changes: 100
After reference $a changes: 200

6.2 ReferencesPrimer 95

e

Figure6.3: Changen RefeenceChain

This is different from the casebelow, which you may change the underlying value because
becausethe referenceis taken on a scalar variable, not a literal:

$a = 100;
$h = \$a;
$$b = 90;

Note that subroutine prototypes are ignored when you invoke a subroutine through its
reference,becauseprototypes are only used during compile time, at which point perl cannot
yet resolve the subroutine to which the referencevariable points.

Recall that to dereference a reference variable we put a pair of curly bracesaround it and
prepend a backslashto it. | then told you that the bracesare customarily omitted. The factis,
the curly bracesmay contain anything, provided it returns a referencematching the expected
type. For example,

${ $ref{KEY} }

dereferencesthe hashreference$ref , take the value associatedwith key KEYwhich is presum-
ably a scalar reference, and dereferenceit. Note that this is not the same as $$$ref f'KEY' g,
which is actually identical to

${${$reff{'’KEY"} # $$ref->{'KEY"} (see below)

which dereferencesthe scalarreference$ref to getthe underlying hashreference,dereference
it and then accessthe value associatedwith the key KEY. In other words, when the curly
bracesare omitted, accessof array or hash is performed at last. As the referencechain gets
more complicated the dereferencing expression can get very confusing. Therefore, Perl also
supports a special syntax resembling the C pointer-to-member (arrow) operator. Table 6.1
summarizes the alternative forms.

The arrow operator can be cascaded,for example,

$hashref->{ffiles' }>[0] = 'index.html’;

presumably $hashref is ahashreference,and $hashref-> f'files ' gyields an array reference.
However, Perl is smart in that by executing the above statement it will automatically create

96 Chapter 6 References

Operation Alternative Method
$$arrayref[$index] S$arrayref->[$index]
$shashref f$key g $hashref-> f$key g
&$coderef(@args) $coderef->(@args)

Table6.1: Alternative Syntaxfor Derefeencing

all the necessarydata structuresand referencesto ful Il this statementif they do not yet exist.
This is known as autovivi cation . In other words, Perl essentially executesthe following
statementwhen $hashref doesn't exist:

$hashref = {
files' = [
‘index.html’,

6.2.3 PassBy Reference

Recall that Perl combines the input parameters into a single list. Similarly is the casewhen
a subroutine returns a list of scalarsto the caller. Therefore, you cannot pass multiple lists
to a subroutine as you cannot separate them into respective lists. References are useful
in this regard because,no matter how complicated the underlying data object is, they are
simply represented by a scalar, and you can pass scalars easily as usual. Moreover, passing
by reference— even if you copy it to another variable — allows you to accessand possibly
modify the underlying data object. Passby reference is efcient becauseonly a scalar
value is involved in parameter passing. When used with subroutine prototypes, subroutine
invocation cannever be more exible than ever.

Passing a referenceis easy Simply take the reference,and passit as a parameter and get it
back from @ in the subroutine. With prototypes (and it is not invoked using the & form) the
caller doesnot even needto take the referencehimself/herself if the corresponding symbol in
the prototype is pre xed with the backslashn symbol. The following example demonstrates
both methods:

sub passArgs (\%$) {
my ($hashrefl, $hashref2) = @_;
Both variables are now hash references

}

%myhash = (keyl' => 'valuel', 'key2' => ‘value2);
passArgs(%myhash, \%myhash);

However, becauseprototypes may not be observed, depending on the way the subroutine
is invoked, you may wish to require the caller to take the reference and pass the reference
instead of relying on prototypes, which is in my opinion the safestway to go at present.

Perl does not support named parameter passing, but some programmers may also wish to
emulate it asfollows, which is recommended if you have to passa humber of parametersto a

6.3 How Everything Fits Together 97

subroutine.

sub somesub (%) {
my %params = shift;
Al parameters now in %params.
my $filename = $params{FILEY;
my @args = @{$params{'ARGS"};
}

somesub(
'FILE' => 'fbin/ls,
'‘ARGS' => |
I_Il,
I_RI’
'lhome/cbkihong’,

);

The advantage is you don't need to remember and follow a predetermined ordering of
parameters becausethere is no ordering in a hash.

6.3 How Everything Fits Together

Here, let us consolidate the conceptsyou have learned in this and the previous chapter. This
is also an appropriate opportunity to form a more complete picture as to how they all t
together.

By now you should already have a clear separation of the names and their underlying data
objects. Data objectsexist independently from variable hamesas seenin programs. They are
linked together by an association, or in other words, a binding. Bindings of lexical variables
are determined and xed in the compilation phase,before aprogram is even executed. Which
data objecta lexical variable is bound to is solely determined by the nesting of environments.
Bindings of dynamic variables, including those declared with the local modier areresolved
at runtime from the symbol table, and are dependent on the call stack during program
execution.

Creating referencesto a data object actually implies establishing additional accesspaths to
it. In general, you can accessa data objectin two ways. The rst way is to accessit through
a variable which is visible and is bound to the data object. The second way is to accessit
through dereferencing a referencevariable which points to the data object. Perl maintains the
number of associationsto every data objectto determine when they should be freed. Simply
put, Perl would destroy a data objectwhen the number of associationsto a data object drops
to 0. This indicates it cannot be accessedrom within the program anymore, and cantherefore
be safely destroyed. Consider this example:

sub createArray () {
ny @rray = (1, 2, 3);
return \@rray;

98 Chapter 6 References

}
{
my $arrayref = createArray();
print scalar @arrayref, "\n";
}

$arrayref and underlying object destroyed

In the createArray() subroutine, a data structure in the form of an array is created which
holds the threeelements,and alexical array variable @array is createdthat associateswith the
array. Before the return function is executed, a referenceto the array is created, which adds
an association to the array. By the time the return function has been executed, the lexical
association to the array has been destroyed. However, becausea referenceto the array still
exists, the array is not deallocated. Therefore, when the number of elements of the array as
accessiblethrough the lexical array referenceis print ed on line 8 the value displayed is still
3. However, at the end of the block the lexical array referenceis destroyed, so the reference
count to the array is now 0, and the array objectis also destroyed.

6.4 Typeglobs

In the previous chapter we had a brief introduction to typeglobs. A typeglob representsan
entry on the symbol table and storesal list of referencesto data objectswith the samename. In
this section, we describe how you may use typeglobs in your programs. In many cases,you
seldom have to messwith typeglobs anymore asreferencesare more convenient and exible.

Packagevariables, including those declared with local are resolved from symbol tables. You
can use typeglobs to create symbol table aliases. For example, *array = *myarray, causes

referencing operations on the symbol array to be resolved through the symbol table entry of
myarray instead.

package main

*myarray

*myarray { SCALAR}
*myarray {ARRAY}
*myarray {HASH}
*myarray {I0}
*myarray { CODE}
*myarray {GLOB}

array \

myarray F———p

AR

Figure 6.4: SymbolTableAliasing

6.4 Typeglobs 99

This causes$array to refer to $myarray , @array to @myarray and &array to &myarray etc.
However, you rarely would like to create an alias for all types in practice. You can actually
assigna referenceof the desired type to atypeglob to replacethe existing one. In Section5.3.2
we wrote aninsert() subroutine that allows you to insert alist into any given array at any
arbitrary position. You may also rewrite it in this way to make use of typeglobs:

sub insert (\@%@) {
local *myarray = shift; # not my!
my ($pos, @listy = @ ;
return splice(@myarray, $pos, 0, @list);
}

Note that, unlike references,accessingthrough atypeglob doesnot require any dereferencing.
With atypeglob entry in place you simply replacethe * symbol with whatever type symbol
that is required for the type. Somepeople may consider it convenient asaresult.

Also note that you cannot use a lexical variable, that is one declared with my, to represent
a typeglob becausea typeglob is a symbol table entry which by nature cannot be lexical.
However, this does not prevent you from assigning a lexical referencevariable to a typeglob,
though.

Finally | would intr oduce to you the *foo f THINGg notation, which you have already seenin
the previous chapter in passing using *INC asan example. By using this notation you can get
the individual referencesheld in a given typeglob foo . Replace THING with the name of the
type. The table below lists the possible types and their names:

THING Type

SCALAR Scalarreference (n$foo)

ARRAY Array Reference(n@foo)

HASH Hash reference (n%foo)

CODE Subroutine reference(n&foo)

GLOB Typeglob reference(n*foo)

FORMAT Format Variables (Not covered in this tutorial)
(0] Filehandle

The notations in parenthesesrepresentan alternative way of accessingthem, using references.
Becauseof the absenceof alternative ways to get the referenceto a lehandle, *oo flOg is
most probably the only one that is more widely used. This is used when a le handle
needsto be passedto and from a subroutine. We will talk about lehandles and the generic
input/output mechanism at a later time.

While typeglobs are still useful in modern Perl programming, you are generally advised to
use them only if you have good reasonsto do so, especially if that purpose can be ful lled
with other means such as references. First, typeglobs cannot be lexical variables while
referencevariables can. Also, typeglobs cannot be used to createcomplex data structur esthat
are possible with references.

Now you should have the fundamental knowledge to proceedto object-oriented program-
ming.

100 Chapter 6 References

Chapter 7

Object-Oriented Programming

7.1 Introduction

Object-oriented programming (OOP) is a popular term in the programming community. It
representsan alternative approachof programming to copewith program development in the
large. As | outlined in the previous chapter, maintenance of large scaleprogramming projects
becomeincreasingly dif cult asthe size of code baseincreases.Object-oriented programming
is seenby many in the Software Engineering community that it is a desirable solution to keep
complex programming projectsin order. In the text below we would explore the rationale
behind this argument and point out how object-oriented model can help alleviate some of the
de ciencies in the plain old procedural model.

Perl started to support the notion of object-oriented programming in Perl 5. In fact, most of
the necessaryconceptsthat you need to understand object-oriented programming in Perl has
already beencovered in the previous chapters, and frankly, not much content are left for this
chapter. However, becauseof the importance of object-oriented programming, and in order
to avoid making the previous chapters too long if | lump them together, | have to dedicate
a chapter to object-oriented programming. Compared with previous chapters, you will nd
longer and more complete examplesin this chapter, soasto help you familiarize with OOP in
a more practical context. You should ip back to the previous chaptersif you have not read
them carefully, becausethe Perl implementation of OOP is based on subjects studied in the
previous chapters. In other wor ds, knowledge of packages,scope,subroutines and references
is a prerequisite to understanding OOP in Perl.

If you have previously programmed in some other object-oriented programming languages
like Javaand C++, you may safely skip the section “Object-oriented Concepts” below. How-
ever, becausethe Perl implementation of OOP is very much different from other languages
like PHP, Javaand C++, you should not skim read the remaining sections as you would
nd the Perl approach to object-oriented programming alien to you (it happened to me as
well when | learned Perl with some knowledge in C++), and there are some traps to which
programmers who have written object-oriented programs in other languages are vulnerable.
Pleasekeep this in mind when you are reading this chapter.

101

102 Chapter 7 Object-Oriented Programming

7.2 Object-Oriented Concepts

7.2.1 Programming Paradigms

The syntax of a programming language is largely in uenced by the programming paradigm
on which the language is based. A programming paradigm representsa framework which
describes in a general, language-independent way how syntactic language elements are
organized and processed. Without delving deep into a formal de nition of programming
paradigms, which is far beyond the scopeof this tutorial, | would rather statein amore casual
way that a programming paradigm is supported by a school of thoughts to addressa speci c
subsetof programming tasks. Therefore, it is generally not appropriate to strictly claim that
one paradigm is always better than the other. However, | personally believe if properly
implemented, a properly-written object-oriented program is easier to maintain, and allows
for alarger basis of extension by leveraging the power of object-oriented programming, for
reasonsthat | would explain later in this section.

There are various programming paradigms in use today. However, the majority of pro-
grammers adopt either one of two major paradigms, namely procedural programming and
object-oriented programming.

Our discussion so far has been solely based on the procedural programming paradigm. A
complicated program is broken down into smaller piecesby delegating pieces of the source
code to subroutines. and external source les. Variables are created and updated dir ectly to
maintain program state during execution.

Object-oriented programming should not be considered a total revamp of procedural pro-
gramming. Instead, it is best considered one that usesprocedural programming asthe basis
with the emphasis on the way different logical components (i.e. classes)interact with each
other. It enforcesa more well-de ned way of grouping related subroutines and data into a
logical entity, and this is the foundation of object-oriented programming.

For an executive summary of the various programming paradigms, please visit the
Wikipedia.or g entry on programming paradigm. Be prepared, they are conceptual computer
sciencetopics that cannot be easily understood.

7.2.2 Basicldeas

As | mentioned in the previous section, the idea of object-oriented programming is to
group related subroutines and data into logical entities, each of which constituting its
own domain. Such logical entities are known as classes Each classde nes a framework
which describesthe properties and behaviours of objects created (instantiated) from the class.

Consider an airplane and a car. Becausea car and an airplane have different characteristics
and exhibit different behaviours (e.g. y vs. move) we model them using two different
classes.In other words, each classrepresentsa certain type of object. In a class, behaviours
are implemented as methods, which are subroutines associatedwith a class. For example,
an airplane classwould very likely include an ascend() method and a descend() method
which contain the program needed for escalation and landing of an airplane. Also, different
classesare likely to have different properties. For example, an airplane is likely to maintain
an altitude property to track down the current height of the airplane above the ground. On
the other hand, a car would not have this property. A classonly de nes the properties. The

http://www.wikipedia.org/wiki/Programming_paradigm

7.3 OOP Primer: Statistics 103

values of which are maintained independently in eachclassinstance.

After we have established a class,we need to createa classinstance which is called an object.
When a class instance (an object) is created, it possessesall the methods of the class and,
as noted in the previous paragraph, each object holds an instance of the properties. This
arrangement allows eachobjectto carry its own setof property values. For example, consider
a Car classwhich has only one property colour and one method move() . When we create
several objects from the Car class, each of them “inherits” the method from the class and
maintains avalue representing the colour of the object.

7.2.3 Fundamental Elements of Object-Oriented Programming

An object-oriented programming language needs to qualify three fundamental properties,
namely encapsulation, inheritance and polymorphism . Theseprinciples are fundamental to
support the virtues of object-oriented programming.

Adapted from Wikipedia.or g, encapsulation refersto the practiceof hiding datastructureswhich
representthe internal state of an objectfrom accessxceptthrough public methodsof that object
Basically, that implies you should not change a property by dir ectly modifying the internals
of an object. Instead, you should modify it through the interface of the object. An interface
is what is expected to be seenfrom outside of the object. In Perl, this includes all object
methods. For example, while an airplane object maintains the altitude property, you should
not modify its value directly. Instead, you invoke the methods ascend() and descend()
to change its altitude becausesome actions need to be taken before climbing up or going
down, which are accounted for by the two methods. By interacting with methods through
the interface, the methods can check whether the operation is valid before committing any
changesto the object.

Inheritance allows a class (subclass)to inherit methods from another class (superclass). For
example, aHelicopter classmay inherit from the Airplane classthe ascend() and descend()
methods, while adding a stationary() method which an airplane doesn't have and is a
characteristic of a helicopter. By inheriting from another class,you don't need to write the
inherited code again (unlessyou would like to override them). Inheritance allows creation of
code that can be easily reused.

Polymorphism is a more abstract notion that cannot be easily explained without resorting
to examples. The principle is that it allows programmers to use a consistent interface for
method invocation on objectsof different classes.

These concepts would be revisited later on. However, before we go further, let us write a
simple Perl program with object-oriented perspective so that you can appreciate how an
object-oriented program looks like in Perl.

7.3 OOP Primer: Statistics

In this section we write a simple Perl module Stats.pom which calculatesthe mean, variance
and standard deviation. We then write a perl program stats.pl which usesthe module
written to output these statistics given the input of a setof numbers. The program listing is

© 00O ~NO UL WN P

A BB DA DBEAEDIDDEDOWWWWWWWWWNDNNDNNNDNNNNRPRPRPRPEPREPERPEPREREEPR
NOoO OOl WNPFPOOOONOOOPMWNPOOO~NOOUOOPMAWNPEPOOOOLONOOG AAWDNEO

104 Chapter 7 Object-Oriented Programming

given rst, and the theories are revisited afterwards.

EXAMPLE 7.1 Statistics Calculator

Stats.pm
The "Stats" Perl nodul e

package Stats;

Create a new class instance (object)
and return a reference of the object
sub new {

ny $argd = $ [0];

ny $cls = ref($ arg0) || $argo;

ny $this = {};

bless $this, $cls;

$t hi s->cl ear ();

return $this;

}

sub clear {
ny $this = $ [0];
$this->{'numist'} = undef;
$this->{'x _sun} = 0;
$this->{'x 2 sum} = 0;

}

Append a value to the Iist
sub addVal ue {
ny $this =$ [0];
ny $num=$ [1];
if (defined $num {
push @$this->{'numist'}}, $num
$this->{'x _sunl} += $num
$this->{'x 2_sunl} += $num*2;

}

Calculate total
sub get Total {
ny $this =$ [0];
return $this->{'x_sun};

}

Calcul ate nean
sub get Mean {
ny $this =$ [0];
ny @unlist = @$this->{"nunlist'}};
if ('!@unlist) { return 0; }
return $this->getTotal ()/@nuniist;

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

© 00O ~NO UL WN P

NNNNNNRRRPRRRRRRR
OB WNPOOWOONOOOUTNWNIERO

7.3 OOP Primer

. Statistics

105

Cal cul ate variance
sub getVariance {
ny $this =$ [0];
ny @unlist = @$this->{"nunlist'}};
my $n = @unist;
ny $sumx2 = $this->{'x 2_sum };
ny $sumx = $this->{'x_sun};
if ($n) { return 0; }
return ($n*$sumx2 - $sumx**2)/ ($ n**2)

}

Calcul ate standard deviation
sub get StdDev {
ny $this =$ [0];
return $this->getVariance()**0.5;

}

Cet list of values
sub get Val ueLi st {
ny $this =$[0];

return @$this->{'nunlist'}};
}
i
#! [usrlb inlperl -w
stats.pl
This programuses Stats.pmto print out some assorted
statistics on the input nunbers
use Stats;
Catch Cirl-C (SIGNT signal)

$SIG"INT'} = 'getResults';
ny $obj = new Stats;

sub getResults {

print "\n\ nResults

\n";

print "Nunmber of values: ", scal ar($obj->getValueList()), "\n";

print "Total: ", $obj->getTotal (), "\n";

print "Mean: ", $obj->getMean(), "\n";

print "Standard Deviation: ", $obj->getStdDev(), "\n";

print "Variance: ", $obj->getVariance(),
exit (0);

1

print qq

Statistics Cal cul at or

"\n";

26
27
28
29
30
31
32
33
34
35
36

© 00O ~NO UL WNPRP

I N o
~No U~ WNRO

106 Chapter 7 Object-Oriented Programming

Cal cul ates several sets of statistics given a sequence of input nunbers.

Enter one val ue on each line.
To exit, press Crl-C.

while (1) {
print ">>";
chomp(ny $num = <STDI N>);
$obj - >addVval ue($nun);

}

When the program is executed,the output looks like this:

cbki hong@hbkih ong: /d ocs/ perltut/src/oop$ perl -w stats.pl

Statistics Cal cul ator
Cal cul ates several sets of statistics given a sequence of input nunbers.

Enter one val ue on each |ine.
To exit, press Qrl-C.

>> 13

>> 26

>>

Resul t s
Number of val ues: 2
Total : 39

Mean: 19.5

Standard Deviation: 6.5
Variance: 42.25

In this transcript, 13 and 26 wereinput and then Ctrl-C was pressedto signal the end of input
list. The results are then displayed. This program catches (intercepts) the SIGINT signal,
which is generated when you pressCtrl-C. By default, if you pressCtrl-C when a program is
running it promptly terminates the program. In this program, | demonstrated how to install a
signal handler, which is a subroutine that is automatically invoked when the corresponding
signal is caught. The signal handler is executedinstead of terminating the program.

Signals are messagessent by the operating system to a process(a program in execution).
Becausesignal is a notion from Unix, and the messagebroadcasting mechanism is different
on every operating system, behaviour of signal handling is platform-specic. Signals are
readily supported on Unix platforms by using the signal handling system calls. Windows
haslimited support of signals. Support for common signals like SIGINT seemsto be working
on Windows, though. The example program works on both of my testing platforms, namely
GNU/Linux and Activestate Perl 5.8.0on Windows. | choseto use signal becausecatching
of the SIGINT signal and executing the getResults() subroutine is handled automatically
so we don't need to place any extra code in the while loop to detect the end of input list.
However, becausean explanation of signals is out of the scopeof this tutorial, and is not the
main theme of this chapter, my discussion of signals will stop here.

7.3 OOP Primer: Statistics 107

7.3.1 Creating and Using A Perl Class

Perl does not have any specialized syntax for classesas in many other object-oriented
programming languageslike C++, Javaand PHP. That makes OOP in Perl looks more cryptic
than it really is. A Perl classis contained in a le of extension ".pm' in its own package. This
is called a module . The lename of the module is the name of the classfollowed by “.pm'.
The package name is also the name of the class. Recall from the previous chapter that if the
package name contains ' , it is changed to the dir ectory separator as the pathname when
the module is being sourced. The following table displays some example package namesand
the corresponding locations where they needto be saved.

PackageName File Path (relative to @INQ
Stats Stats.pm
Crypt::CBC Crypt/CBC.pm

Table7.1: Relationshipof Packag&lamesandFile Placements

Recall that @INCcontains a list of path pre xes that Perl usesto locate a Perl source le. A
module contains all method de nitions. Don't forget to put the 1; at the end of the module.
Omitting this resultsin a compile-time error.

Before you use a module you should rst import it into your program. You can use require
that you were taught in Chapter 5. You may import a module in one of two ways. The rst
way is to passthe path to the module (relative to @INQ in quotes to the require function.
For example, require "Crypt/CBC.pm"; Another way is to just specify the package name
without quotes, for example require Crypt::CBC; However, the use function is preferred in
general for Perl modules. The syntax of use is

use MODULE[LIST] ;

It is semantically equivalent to

BEGIN {
require MODULE;
import MODULELIST; # indirect object syntax

}

which not only imports the module MODULEat compile time, it also imports the symbols
specied by LIST into the current namespace (package) using the import class method.
import is a special classmethod that may be de ned by a classauthor. Many modules do not
have any symbols to be exported, however, some of them do. If the method cannot be found,
it is silently bypassed. For example, users of the CGl::Carp module may import from it the
fatalsToBrowser ~ symbol, which is actually the name of a subroutine that generatesa page
in HTML describing the details when an error occurs, which is then returned to the viewer's
browser. This is used by CGl scripts to easily trap runtime errors. The use statementrequired
is

use CGl:Carp ‘fatalsToBrowser'

108 Chapter 7 Object-Oriented Programming

Documentation of a classshould tell you how to use it, and whether any symbols need to be
imported. Therefore, usually you don't have to worry about this at all, unless you have to

write aclassthat exports symbols. The use function is generally preferred to require because
modules are imported at compile time. Therefore, missing modules are discovered at the time

the program is compiled before execution, which savesyou from an embarrassing situation

where execution is on midway when Perl nds out some of the modules are missing and the
program fails to continue.

7.3.2 How A Class s Instantiated

As mentioned previously, to instantiate a classis to create an object that belongs to the class.
From the perlobj manpage, a Perl object created is simply arefeencethat happengo knowwhich
classt belongdo. How doeseverything t together?

Let us go backto the new() classmethod of the Statsclassin our example. The most important
statement is on line 12, that is, the bless() statement. The bless() statement makes the
reference $this no longer just an ordinary hash reference. It becomesan object reference
of the Stats class, and by doing so you can also accessthe methods from the reference.
Therefore, this method is known asa constructor, becauseit is where the objectis created. A
constructor is not necessarily called ‘new() '. It can be of any name, despite it is customarily
called new. Object-speci c data, or properties, are stored into the object reference. Let us
explain eachline one by one.

ny $argd = $ [0];
ny $cls = ref($arg0) || $argo;

In Perl, methods are exactly identical in behaviour to subroutines. However, whether it acts
like a method or aplain subroutine is determined solely by the way it is invoked. A method
is a subroutine that expectsan objectreferenceasits rst argument. Using the new() method
asan example, the following ways of invoking it are identical:

my $obj = new Stats; # Indirect object syntax
ny $obj = Stats->new(); # C+-l i ke class nember invocation (recomended)
ny $obj = Stats::newStats); # Resenbling subroutine invocation

With the indir ect object syntax, the name of the method is placed rst, followed by the object
reference or name of the class. For example, getTotal $obj (&, 'b) means that the
method getTotal() is invoked on the object$obj . Any arguments that follow (a’, b)are
arguments to the method. This form is generally only recommended for constructors, because
this form of method invocation is not syntactically obvious. The secondform is generally rec-
ommended asit's lessconfusing. The classname or object referenceis placed rst, followed
by ->, the method name and arguments. The last form is typical subroutine invocation.
However, in this form you needto passthe classname or objectreferenceasthe rst argument.

Now go back to our example. We put the rst argument to $arg0 . The next line servesto
obtain the classname from it. The ref() function testsif the parameter is a reference. If it
is one, it returns a string indicating its type (seethe ref() documentation for details). If it is
an object reference, it returns the package name. By the short-circuiting behaviour of logical
operators the packagename is assignedto $cls . This catersfor the fact that the new() method
can be invoked on the Stats classor a classinstance, although customarily, a constructor is

http://www.perldoc.com/perl5.8.0/pod/perlobj.html
http://www.perldoc.com/perl5.8.0/pod/func/ref.html

7.4 Inheritance 109

only invoked on aclassin most other programming languages.

ny $this = {};
bl ess $this, $cls;

Here, we create an empty hash reference and bless() it to the Stats class. This operation
is called bless , very likely becauseit works like a wizard playing with his magic wand,
turning an ordinary reference into an object. Very magical indeed. To be an object, Perl
only mandates a bless() ed reference. It doesn't require to be a hash reference, although
it is most likely chosenfor its exibility . Pleaseread the perltoot manpage for its coverage
on alternative forms of Perl objects. It acceptstwo parameters. If the second parameter is
missing, it assumesthe current package.

The last two lines in the constructor resetsthe object data and return the object reference so
that the caller of the constructor (in stats.pl as $obj) can save the object referencefor usein
later operations.

The program readsin a number from eachline, and invoke the addValue() method on $obj .
This invokes the method with the object referenceitself asthe rst parameter. The value,
as the second parameter, is appended to a list of numbers that is stored with the object
reference,and update the sum (x_sum) and the sum of squares (x2 _sum). Thesetwo pieces of
statistics are used to calculate the various statistics, when the SIGINT signal is detected and
the getResults() signal handler invoked. The variance and standard deviation are given by

q

Standard deviation (s)= 2 (n&L;x (&L;x)?)

Variance= s?2

The class provides a number of methods for users of the classto retrieve the list of values,
total, mean, variance and standard deviation. Note that these methods are invoked on
the bless ed object returned by the constructor instead of on the class. Through the class
interface, the class provides all the necessary methods to interact with without requiring
the user to know anything about the implementation of the class. For example, you do
not have to care about how data are stored and processedinternally. Becausean object
is simply represented by a reference variable, unlike some other programming languages
Perl does not have the notion of protected accessspeci ers to classify methods by dif ferent
accesspermissions such as “public” or “private”. Users may also be possible to manipulate
the underlying hash directly. However, by documenting the interface clearly class users
will be encouraged to accessthe object through the interface instead of having to manipu-
late objectdata dir ectly from the referencevariable. This ful lls the initiative of encapsulation.

7.4 Inheritance

Inheritance is important in any programming languages becauseit allows you to reuse
portions of another source program in your program, sothat you don't have to rewrite them.
You save development effort asa result. Perl implements inheritance in a very simple way.
When a method is invoked on an object and the method cannot be found in the current
package, the packageswhose names are in the variable @ISA are searched in order for the
missing method. In object-oriented terminology, we describe this situation as a derived

class inheriting from abase class , becausethe derived classcontains methods de ned in

http://www.perldoc.com/perl5.8.0/pod/perltoot.html

© 00O ~NO UL WN P

W W WNDNNDNNNMNMNNNNNRPRPRPRPRPRPERPERPERPRERPREPE
NPFPOOWONOOULA, WNPEPOOONOOO A~WDNPEO

110 Chapter 7 Object-Oriented Programming

itself as well asfrom the base classes. A baseclassis also called a superclass or a generic
class, while a derived classis also called a subclass.

When you put the name of a package into your package's @ISA all the methods de ned in

that package,together with any de ned in their baseclassesaswell asthe baseclassesof base
classesetc. are available in your package. You may wish to rede ne some of the inherited

methods becausethey may not suit your current classanymore. To rede ne a method, which

is called overriding a method, simply rewrite the method in the way you desire and put it
in the current package. If the method is invoked on the current package or its subclassesthe
overriding method will be invoked instead of the overridden ones (that is, those in the base
classes).

As an example, we will write a Stats2 class which inherits from Stats with the added
functionality of deducing the maximum and minimum among the list of numbers input.
Also attached below is the modied stats2.pl which uses Stats2 with the additional
functionalities:

EXAMPLE 7.2 Statistics Calculator (Extended)

Stats2.pm
Derived "Stats" with sone functionalitie s added

package Stats2;

@SA = ('Stats'); # inherits Stats
use Stats;

Note that by using the 2-argunment form of
bless() the constructor can al so be inherited

Override addVal ue()
sub addVal ue {
ny ($this, $num = @;
if (defined $this->{'min'}) {
$this->{'min'} = $num

$this->{'max'} = $num
} else {
$this->{'min'} = ($num < $this->{'mn'})?2$num $this->{' mn'};

$this->{'max'} = ($num > $this->{' max' }) 2$num $t hi s->{' max' };
}
invoke the base class version of addVal ue()
$t hi s- >SUPER: :a ddVal ue($num); # OR $this->Stats::addVal ue($ num

}

Find m ni mum

sub get M ni mum {
ny $this =$ [0];
return $this->{'mn'};

}

Find nmaxi mum

33
34
35
36
37
38

© 00O ~NO UL WN P

WWWWwWowWwowwwRNRNRNNNMNNNNNRPRRPERERERRPR R
DN T BROMNPOOONOURWNRPOOO~NOOUNWNEREO

7.4 Inheritance

111

sub get Maxi mum {
ny $this = $ [0];
return $this->{' nax'};

}

L

#! [usrlb inlperl -w

stats2.pl
This program uses Stats2.pmto print out some assorted
statistics on the input nunbers

use Stats2;

Catch Crl-C (SIGNT signal)
$SIG"INT'} = 'getResults';

my $obj = new Stats2;

sub getResults {

print "\n\ nResults \ n";
print "Nunmber of values: ", scal ar($obj->getValueList()), "\n";
print "Mninum ", S$obj->getMnimm), "\n";
print "Mximum ", $obj->get Maxi mum(), "\n";
print "Total: ", $obj->getTotal (), "\n";
print "Mean: ", $obj->get Mean(), "\n" ;
print "Standard Deviation: ", $obj->getStdDev(), "\n";
print "Variance: ", $obj->getVariance(), "\n";
exit (0);

1

print qq

Statistics Cal cul ator

Cal cul ates several sets of statistics given a sequence of input nunbers.

Enter one val ue on each line.
To exit, press Qrl-C.

while (1)
print

{

n S>> ||;

chomp(ny $num = <STDI N>);
$obj - >addVal ue($num;

}

Note that by placing the name of a packagein @ISAdoesnot freeyou from the need of adding

the use statementto import the contents of the package. Stats
is the derived class.Here, the addValue()

is the baseclasswhile Stats2
method is overridden to checkwhether the current

input number is the minimum or maximum and update the counters internally if it is one to
always keep track of the minimum and the maximum. Then, two new methods are de ned
that let usersretrieve the minimum and maximum values.

112 Chapter 7 Object-Oriented Programming

Occasionally an overriding method needs to invoke an inherited but overridden method.
addValue() here is an example, becausewe overrode it to add new functionalities rather
than to replace it in its entirety. You can pre x a package name before the name of the
method, separated by two colons, to indicate the classfrom which to start searching for the
method. The default is always to start searching from the packageto which an objectbelongs.
Therefore, you always have accessto the current, overriding version. You can accessthe
version de ned in the Stats package,that is the baseclasswith respectto Stats2 , by

$this->Stats::addV alu e($num);

However, for conveniencea pseudo classSUPERhasbeende ned that always refer to the base
classes. Essentially, the current, overriding version is bypassed, as indicated in the example
program.

The Stats2 class can actually make use of the getValueList() method to deduce the
maximum and the minimum values on-the-y instead of having to memorize two additional
piecesof information, and the addValue() method doesnot needto be overridden asaresult.
This is left asan exercisefor the readers.

Even if your class's @ISAis empty, it still inherits from a classcalled UNIVERSAL which is the
baseclassof all classesin Perl. Therefore, methods de ned in UNIVERSALare available in any
class. It hasthreemethods, which are described below.

isa(CLASS)

This method allows you to checkwhether an objectbelongsto CLASSor a subclassof CLASS It
returns atrue value if it is one,undef otherwise. You may useit in two ways.

Object-oriented form:

$obj->isa(UNIVERS AL'); # must be true, by definition

Procedural form:

use UNIVERSAL ‘isa’;
isa($obj, 'UNIVERSAL);

can(METHOD)

This method allows you to check whether an object has a method called METHODIt returns
the referenceto the subroutine if thereis one, undef otherwise. It also searchesthe upstream
baseclasses.As an example, this is an indir ectand silly way to invoke the isa method on the
current package:

sub isSubclass {
my ($this, $cls) = @ ;
my $subref = $this->can(isa’) ;

© 00O ~NO UL WN PP

PR R R R R R R
W ~NO N WNRO

© 0O ~NO UL WDNPF

el I s el el =
o UDWNRE O

g b~ w NP

7.4 Inheritance 113

$this->$subref($cls)i
}

$obj->isSubclass(’ UNIVERSAL) ;

Can you add methods to a package like UNIVERSALwithout modifying the module le? The
answer is you can. Here, | am going to demonstrate how to add to the UNIVERSAL class a
constructor sothat you don't have to de ne any constructors in your modules.

EXAMPLE 7.3

universal . pl
Contains definitions to add to UNl VERSAL cl ass

package UN VERSAL;

sub new {
ny $cls =ref($ _[0]) || $_[0];
ny $this = bless {}, $cls;
$this->initialize()
return $this;

}

sub initialize {
defaults to no-op
override to execute class-specific startup code

}
1

Test (oj ect . pm
Test class nodul e

package Test Qbj ect ;

sub initialize {
print "Testhject::i nitialize()\ n";
$this->{"a'} = 6;

}

sub di spl ayMessage {

ny ($this, $nmsg) = @;
print $nsg;

}

il

#![usrlb in/perl -w
testuniversal . pl

BEG N {

© 00N O

10
11
12
13

114 Chapter 7 Object-Oriented Programming

Add additional nethods to UN VERSAL
require "universal.pl" ;

}

use Test (bj ect ;

ny $obj = new Test (j ect ;
$obj - >di spl ayMessage("Hel lo Wrld!\n");

universal.pl contains the methods to add to the UNIVERSALclass. This le is sourced by a
BEGIN block in testuniversal.pl which ensuresthat the module de nitions are imported at
compile time. Note that the TestObject module doesnot have to de ne the constructors asa
result. Note that you may optionally specify an initialize() method in your classmodule,
which is automatically invoked by the constructor (universal.pl ::9) where you can place
someinitialization code. If you do not provide it, the version provided by universal.pl will
be used instead, which is just an empty method that doesnot do anything.

Although you may do it that does not necessarily mean you should do it. In general, |
suggestconverting universal.pl into a module which actsasthe baseclassfor all your other
modules instead of adding new methods to the UNIVERSAL class. This example is given to
demonstrate it works. However, if a user of TestObject forgetsto import the universal.pl ,
then it will be an error asa constructor cannot be found.

7.5 Another Example: Traf ¢ Light Simulation

If my discussionin the previous sectionde nitions sounds too abstractto you, let us consider
a ctitious Traf cLight classwhich models atypical traf ¢ light we have on the streetstoday.
We would write a program which models its behaviour in a strict object-oriented approach
sothat you canappreciate OOP in a practical context.

For simplicity , let's assumethe traf ¢ light consists of two statesonly. A red light denotes
“stop” and a greenlight denotes“go”. The two statesare mutually exclusive, that is, exactly
one of the two lights should be lit at any time. The state alternates every 10 seconds. This is
coordinated by a controller regulated by atimer.

This situation canbe modeled using threeclassespecausethreetypes of objectsexist, namely
the traf c light, the controller and atimer. The three objects have dif ferent behaviours, sowe
separatethe program into threeclasses.EachTraf cLight objectonly needsto remember one
piece of information, that is, the current state,in order to (logically) switch on the appropriate
light bulb. As different traf ¢ lights can be in different statesat any given instant, the state
canberegarded as a property associatedwith eachTraf cLight object. To changethe state of
the Traf cLight we cancreateastate() subroutine and associateit with the Traf cLight class
through which the state of the Traf cLight object concerned can be retrieved or set. A Timer
object implements a countdown timer to regulate the controller, which in turn invokes the
changein the state of the traf ¢ light.

While | have not yet covered how to write a Perl program in object-oriented approach, |
consider it may be helpful for me to show the source code early so that you can have some
more practical ideas of object-oriented programming and how OOP is implemented in Perl.
Note that OOP in Perl makes extensive use of references, which are not introduced until

7.5 Another Example: Traf ¢ Light Simulation 115

the next chapter. You are encouraged to ip to the next chapter to get some basic ideas of
references rst. Alternatively , the source code is extensively commented so that you cantry
to appreciate the program structure without fully understanding the syntax. | will explain
what the program doesand how everything ts together asl proceed.

EXAMPLE 7.4

1 # Tinmer.pm--- inplenents a countdown tiner

2

3 package Ti mer;

4

5 # COreate a Tiner class instance (instantiation)

6 sub new {

7 ny $class =ref($ _[0]) || $_[O];

8 ny $this = {};

9 $this->{'i nterval'} =$[1]; # set interval in seconds
10 bl ess $this, $class;

11 return $this;

12}

13

14 # You attach a listener so that when some events occur,
15 # the "cal |l back" |istener subroutine woul d be invoked.
16 # This is a good place for caller to perform some actions
17 # in respond to the event.

18

19 # If you have progranmed Java Swing before, this concept
20 # and term nol ogy should be faniliar to you.

21 sub addListener {

22 ny $this = $ [0];

23 # push (sub reference, object reference) into listener |ist
24 push @$this->{'listeners'}}, [$[1], $[2]];

25 '}

26

27 # Start countdown tiner

28 sub start {

29 ny $this = $ [0];

30 ny $starttime = tine;

31 while (tine - $starttime <= $this->{"interval'}) {
32 # no-op

33 }

34 # Timer stops. Notify listeners.

35 foreach (@{$this->{'l isteners'}}) {

36 # I nvoke each |i stener

37 ny $subref = ${$_}[0];

38 (${$ _}[1])->$subref ();

39 }

40 }

41

42 1;

1 # TrafficLight.pm--- an abstraction of the traffic Iight
2

© 00N Ul bW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

© 0O ~NO UL WDNPF

NNNRPRPRRERRRRRRR
NP OO®W~NO®UNWNIERO

116 Chapter 7 Object-Oriented Programming

package TrafficLight;

Properties:
state: 0 for RED (stop); 1 for GREEN (go)

Oreate a TrafficLight class instance (instantiation)

sub new {
ny $class =ref($ _[0]) || $_[0];
ny $this = {};

$this->{'state'} = 0; # defaults to "stop"
bl ess $this, $class;
return $this;

}

Cet/set state: "stop" or "go"
sub state {
my $this = shift;
if (defined $_[0]) {
if ($_[0] '=0&& $_[0] !=1) {
die "TrafficLight::state(): Invalid argunent.\n";

}
$this->{'state'} = $[0];
print (($this->{"state'})?"GREEN":"RED", " light is ON.\n");
}
return $this->{'state'};
}
1;

Controller.pm--- regulates the traffic lights
package Controller;

use Ti mer;
use TrafficLight;

Create a Controller class instance (instantiation)

sub new {
ny $class =ref($ _[0]) || $_[0];
ny $this = {};

bl ess $this, $class;

$this->{'t iner'} =new Tinmer($_[1]);

$this->{'t imer'}->addListener(\&ontroller::c hangeState, $this);
$this->{'t light'} = undef;

return $this;

}

Specifies which traffic light to regul ate
sub set TrafficLight {

ny $this = $ [0];

$this->{'t light'} =$[1];

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© 00O ~NO UL WN P

e e
A WNRO

7.5 Another Example: Traf ¢ Light Simulation 117

}

Invoked automatically when a traffic [ight need to change state
sub changeState {

ny $this = shift;
my $currentstate = $this->{"tlight'}->state();
$this->{"t light'}->state(1l - $currentstate);
1
G into an infinite |oop
sub start {
ny $this =$[0];
$t hi s->changeSt at e(); # This has to be called for first time
Pick the first one and go
while (1) {
Reset timer
$this->{'t iner'}->start;
}
1
i

#/usr/b in/perl -w
tlightl.pl --- Standalone traffic |ight sinulation

use TrafficLight;
use Controller;

Create one traffic light and one controller
whi ch changes state every 10 seconds
$lightl = new TrafficLight;

$ctl = new Controller(10);

$ctl->set TrafficLight ($lightl);
$ctl->start;

Class modules carry the “.pm” le extension. Among the four source le listings above,
the rst three are Perl class modules, representing the classesTimer , TrafficLight and
Controller respectively. The last listing, tlightl.pl is the main program that usesthe Perl
classesdeveloped to carry out the required functionality . You will nd that if a program
is developed entirely with the object-oriented paradigm the main program is usually short
becauseimplementations are delegated to modules.

On lines 5-6 of tlightl.pl , we import the classesneeded. In the next section, we would
seethat use() is a wrapper of require() which is usually the preferred way of importing
modules so that they can be used thereafter in the program. Then we create one object of
TrafficLight and Controller respectively. After associating the TrafficLight object with
the Controller object, what is left to do is to invoke the start() method of the Controller
object.

On execution you would then see messagesprinted at regular intervals, corresponding to

118 Chapter 7 Object-Oriented Programming

the colour of the traf ¢ light at that instant. The colours keep on alternating and to quit this
program you need to pressCitrl-C.

Chapter 8

Files and Filehandles

8.1 Introduction

The ability to read from and write to les is nearly always essentialto computer programs.
Output is frequently generatedin the course of execution of a program. However, if they are
not stored in secondary storage media such as disks, they will disappear once the power is
switched off. Therefore, le accessis an important element of the input/output system. In
this chapter, we will explore the general Perl input/output system and the functions we can
useto accesghe lesystem.

Similar to the C standard and to bein line with Unix concepts, Perl usesthe concept of le-
handles to representan opened le. They are also known as le descriptors in programming
languageslike C. Although | did not mention explicitly , actually you have beenworking with
lehandles throughout the tutorial. The statement

print "Hello World!";

Appeared in the very rst Perl program covered in this tutorial, it implicitly usesa lehandle
to get the string print ed on the screen. This statementis actually written as

print STDOUT"Hello World!";

However, the lehandle STDOUTis assumed by default, so we have been omitting it all the
way up to this chapter. Unix has a generalized view of input and output. Apart from
les, hardware devices are also representedas les on a Unix lesystem. Therefore, input
and output of hardwar e devices can be represented by input and output of les, through a
lehandle. This generalized view helps abstracta user or programmer from the peculiarities
of the implementation of each device, which are left to the device drivers that exist in the
operating systemkernel, allowing usersto interact with adevice in a uniform manner. With a
strong Unix tradition, Perl adopts a similar notion aswell. Even if you don't useany avours

of Unix at all it does not mean you don't have to read this chapter, becausePerl usesthe
same concepts on any of the platforms it run on, so that a considerable degree of platform

independence can be achieved.

119

120 Chapter 8 Files and Filehandles

8.2 Filehandles

Perl has a number of prede ned lehandles, namely STDIN, STDOUTand STDERRthat you can
use in command line applications for input/output on screen. STDIN, or standard input, is
the lehandle from which keyboard input can be read. STDOUT or standard output, is where
you should send the output of your program. STDERR or standard error, is mostly used
for outputting warning or error messageshecause sometimes people wouldn't like error
messagesto be displayed. By dumping error messagesto a separate lehandle the user may
decide whether to display them or instead redirect them to, for example, alog le on disk
for diagnosis at a later time. Thesethree lehandles are always ready for you to use and you
don't needto createthem manually.

Filehandle is one of the data types available in Perl. As you have learnt in the chapter on
references, lehandle has a separateslot in a symbol table entry. However, unlike other data
types you do not have to pre x a lehandle with atype symbol. By convention, lehandles
are in all capital charactersto make them visually stand out from names of functions and
subroutines etc.

8.2.1 open aFile

Unless you are working with one of the prede ned lehandles, the rst stepyou should take
is to populate a lehandle. A populated lehandle representsan active stream which allows
input or/and output of data. For the caseof le accessa populated lehandle representsan
opened le, which is then used by the input/output functions to read from or write to the
le. Filehandle is also used in Perl socket programming which is used to representa socket.
However, due to time constraints network programming is not covered in the rst edition of
this tutorial.

Unix supports two setsof le accessfunctions. One setis provided by the operating system
kernel, and the other setis provided by the standard C libraries installed on the system,
which is implemented on top of the version provided by the kernel. The le accessfunctions
in Perl are actually interfaces to these functions. Perl allows accessto both, through the
open() function which invokes the version provided by the C libraries, and the sysopen()
function invokes the operating system version. The use of open() is generally preferred to
sysopen() , becauseit is simpler to use, but sysopen() is more powerful.

You use the open() function to open a le. Usually, the open() function takes on one of the
following forms:

open FILEHANDLE, EXPR
open FILEHANDLE, MODE, EXPR

FILEHANDLE is either a lehandle or alexical variable with the undef value, which is used by
the open() function to storethe referenceto the lehandle created. EXPRis a scalarexpression
which contains the name of le to open() , and MODElescribesthe accessmaode to apply to the
le, for example, whether read or write accessare allowed on the le. If MODHEs missing, it
defaults to “<”, the read-only mode. Otherwise, MODEhould be prepended to EXPRin the rst
form, where MODEs missing. If open() is successful,it returns a nonzero value. Otherwise,
undef is returned. You should always check the return value of le accessfunctions and
handle casesof failur e to ensure your program is fault tolerant, especially if your program is

8.2 Filehandles 121

to be used by other people instead of you, such as CGI scripts.

Traditionally , a lehandle is usually usedinstead of alexical lehandle reference.For example,

my $retval = open(LOG, "<command.log");

which createsLOGpermanently on the symbol table of your current package. This may be
acceptableto you, but you may wish to local ize it to a certain subroutine, for example. As a
recapitulation, this is the way to do it:

local *LOG;
my $retval = open(LOG, "<command.log");

However, because lehandles themselves cannot be lexical, and many Perl programmers
are not familiar with the use of typeglobs, a better way would be to use a lexical lehandle
reference, which you can easily pass around without needing any knowledge in typeglobs.
An example is

my $fhLOG;
my $retval = open($thLOG, "<command.log");

Hereis asummary of the 6 accessnodes provided:

MODE Description

< Read-only access.Specied le must exist.

+< Read-write access.Specied le must exist.

> Write-only access/File emptied if exists;created otherwise.

+> Read-write access.File emptied if exists; created otherwise.

>> Append-only accesq le pointer at end-of- le). File createdif not exist.

+>> Read-Append accesq le pointer at end-of- le). File createdif not exist.

Table8.1: File AccessModesfor open()

These accessmodes determine the operations that can be applied on a le. If you open() a
le with read-only accessbut you try to write data to the corresponding lehandle, aruntime
error will occur.

Every open le hasa le pointer, which determines the position of the next character read
or write. The rst four modes listed above position a le pointer at the beginning of a le,
so that read/writes occur at the beginning of the le. < grants only reads accessto the le.
> grants only write accessto the le, which is automatically created if it does not exist, and
empties it before writing. Both +< and +> grants read-write accesso the le, soyou may read
from aswell aswrite to the lehandle. The difference between +< and +> is that for +<, the
specied le must exist, while for +> the le is automatically createdif it does not exist, and
empties the content before writing. The last two modes place the le pointer at the end of a
le. Therefore, data are written at the end of the le. A le opened with either of thesetwo
modes is created where necessary

122 Chapter 8 Files and Filehandles

Note that +< does in-place writing. If le write occurs in the middle of a le, it simply
overwrites the exactnumber of charactersfrom the le pointer required by the write, growing
the le asnecessaryand other charactersin the le are unaffected. The effect is similar to
putting your text editor in “replace” or “overwrite” mode and typing charactersat a cursor
to overwrite the old text.

8.2.2 Output Redirection

Output redirection allows you to redirect output sent to a certain lehandle to another
lehandle. This is frequently used by shell script authors on Unix systemsto redirect error
messagesto log les or simply to throw them away asif they have not beenoutput at all.

To use I/O redirection, specify “>&" as the MODEand EXPRis the name of the lehandle to
which output to FILEHANDLE s redirected. An example is shown below, which redirectsoutput
that are sentto STDERRo a le that hasbeenpreviously opened with the lehandle LOGinstead.

open (STDERR, ">&LOG");

Texts that are sentto STDERRwill beredirectedto a le instead, sothey are no longer output
on screen.

8.3 File Input and Output Functions

In this section, | will introduce to you various functions you can use to read from or write
to a lehandle. Note that in functions expecting a lehandle asits argument you can use
a lexical lehandle referenceinstead of a typeglob. Simply replace the lehandle with the
lexical variable, for example, <$thLOG>.

8.3.1 readline() — ReadsA Line from Filehandle

The readline() function acceptsa typeglob as parameter to read a line from the lehandle
contained in the typeglob. In scalar context, eachinvocation of readline() reads up to the
newline character. When no more lines can beread, undef is returned. An example is shown
below, which copiesatext le Filel.txt to File2.txt.

open FILE1l, "<Filel.txt" or die "Cannot open Filel.txt!";
open FILE2, ">File2.txt" or die "Cannot open File2.txt!";
my $line;

while ($line = readline(FILE1)) {
print FILE2 $line;

}

close FILEZ1;

close FILEZ2;

However, customarily readline() is not frequently used becausePerl provides an operator
<FILEHANDLE> which is an interface of readline() . We can replace readline(FILE1) above

8.3 File Input and Output Functions 123

with <FILE1> .

In list context, both readline() ~ and <FILEHANDLE> read all the way until end-of-le occurs,
and split it into lines. The return value is an array with its elements being the lines extracted.
This is seldom used in practice, becauseif the incoming le is very large, the generated array
will also be very large, consuming alot of memory space. Therefore, it is alot saferto setup
aloop to readin line by line asshown above.

8.3.2 binmode() — Binary Mode Declaration

Not knowing if you are aware or not, text les actually are stored differently on Unix and
MS-DOS/W indows systems. The culprit is that the line termination characters used on
these platforms are different. That's why there is an ASCII/Binary transfer mode option in
your FTP application. Binary les do not rely on line termination charactersto denote the
end-of-line. Therefore,abinary le is representedin an identical manner on these platforms.
However, becausetext les usesline termination characters,and they vary from platform to
platform, two les with identical textual content end up being representeddif ferently.

To ensure Perl programs have high levels of portability , in general Perl programmers simply

have to treat nn as the line termination character. This is what we have readily assumed
from the very beginning of this tutorial, and the underlying system carries out all necessary
conversions for us automatically. However, this systemdoesnot work for MS-DOS/W indows

systems becausethey distinguish between text les and binary les. Therefore, on these
systemsPerl needsto intr oduce a PerllO layer on top of the native le accessunctions which

converts between the underlying line termination charactersand nn. This does not pose any
problems for text les, asthis conversion is actually intentional for text les. However, binary

les should never bealtered in any way. binmode() with just a single parameter of FILEHANDLE
essentially instructs all read/write through the lehandle to bypass the conversion layer.
Becausebinmode() is ignored on other systems,you should generally useit on all binary les

for portability . It should be invoked right after a le is opened,i.e.

open BMP, "<logo.bmp";
binmode BMP;

If binmode() hastwo parameters, the second parameter indicates the PerllO layers to apply
which actasconversion Iters. The “crlf ” layer is the layer we mentioned above for MS-DOS
compatible systems which carries out line termination conversions. Usage of this form is
generally not needed asthe defaults are generally adequate for most programming purposes,
and so are not described here.

8.3.3 read() — ReadsA Specied Number of Charactersfrom Filehandle

The syntax of read() is
read FILEHANDLE, SCALAR, LENGTH OFFSET]

which readsfrom FILEHANDLE LENGTHcharacters,usually equivalent to bytes and assignit to
the scalar SCALAR If OFFSETis given, it speci es the zero-based offset of SCALARfrom which to

124 Chapter 8 Files and Filehandles

start writing.

This is usually used for binary les, but not necessarily The le copying program shown
above should generally not be used becausebinary les are not line oriented, and it does not
usebinmode() which causesle copying errors on MS-DOS compatible systems. Presumably
the correctway is asfollows:

sub copy ($%) {
my ($src, $dest) = @_;
open FILE1, "<$src" or die "Cannot open $src!";
open FILE2, ">$dest" or die "Cannot open $dest!";
binmode FILEZ;
binmode FILEZ;
my ($buffer, $numChars); my $hufferSize = 1024,
my $size = 0;
while ($numChars = read(FILE1, $buffer, $bufferSize)) {
$size += $numChars;
print FILE2 $buffer;

}
close FILEZ1;
close FILE2;
return $size;
}
8.3.4 print()/printf() — Output To A FileHandle

We have used print() quite alot soit is not worthwhile repeating all the details here again.
However, if a lehandle is specied, it outputs to the lehandle. Otherwise, the lehandle
defaults to STDOUTas| mentioned earlier in this chapter.

printf() is similar to print() . However, it is an exceptionally powerful function that lets you
perform varieties of type conversions on the y . printf() is an artifact from the C standard
/0 library. In C, generating a string is not a simple affair, becausethere is no variable
interpolation asin Perl and there is not an easy and exible way of string concatenation.
Also, becauseC is strongly typed and you cannot concatenatea C-style string with other data
types, for example, a number, you have to end up performing alot of type conversions before
the desired string can be successfully generated and eventually written to a le descriptor.
Therefore, for convenience purpose C provides a set of functions collectively known asthe
printf() family of functions which allows generation of many common forms of string to be
completed in one function call.

While this function is very versatile it is also acclaimed as the most complicated function in
C. This function works by constructing a concise but generally cryptic format string, which
consists of the string with some placeholder elds inserted. These placeholder symbols
describe the type conversion operation required for eachof the elds to be inserted into the
string, which are passedas additional arguments to the printf() function. printf() is one
of the several few C builtin functions which accept a variable number of arguments. The
complexity lies completely in constructing the proper format string. While Perl has exible
string interpolation and automatic type conversions, printf() is not as important asin C.
Mor eover, because printf() involves additional operations, it is less ef cient compared

8.3 File Input and Output Functions 125

with print) . Therefore, you should avoid it if print() suf ces for the purpose. However,
becauseit is indeed handy for certain kinds of conversion operations, | am going to describe
it below. In Perl's implementation, another function sprintf() exists. It returns the generated
string instead of directing it to a lehandle. Otherwise, it is identical to printf() . In fact,
printf() is internally implemented using sprintf) . This is intended to be an intr oductory
description of most frequently used options only. For more information, please read the
perlfunc/sprintf manpage.

The following sprintf() example, however simple, gives you ataste of what it is like:

"Good Morning. The number is 6."
sprintf("%s. The number is %d.", "Good Morning", 6);

The format string is just a string with placeholders inserted. Placeholders start with the %
character. Placeholders are replaced by the corresponding arguments given after the format
string with the speci ed type conversion operations performed.

8.3.5 seek() — SetsFile Pointer Position
seek FILEHANDLE, POSITION, WHENCE

You may use the seek() function to set the position of le pointer in a le specied by
FILEHANDLE POSITION is a signed integer indicating the new position, relative to the position
indicated by WHENCBVHENCES an integer which is either 0, 1 or 2 representing the beginning-
of- le, the current le pointer position and the end-of- le respectively. However, because
hard-coding these integer values is not semantically obvious, we usually use the names of
the corresponding constants available in the C standard I/O library instead. Theseconstants
arede ned in the Perl Fentl module. You canimport the three constants by

use Fcntl "seek’

The constants are SEEKSET, SEEKCURand SEEKENDrespectively. After you have imported
them, you can use them directly in your programs. seek() is frequently used with binary
le access.Binary les usually have their data stored in a certain format that allows ef cient
accessof data. To achieve this, some elds are encoded and saved at xed positions in a
binary le, which you may accessdirectly with the seek() function. The new position is
calculated asthe sum of POSITION and the baseposition indicated by WHENCHEHere are some
examples:

seek(FILE, 0, SEEK SET); # Jump to beginning of file
seek(FILE, 5, SEEK _CUR); # Jump 5 bytes forward
seek(FILE, -1, SEEK END); # Jump to last byte of file

8.3.6 tell() — Returns File Pointer Position

The tell) function returns the position of the le pointer, in bytes. This function returns
meaningful values only if used on an open() ed le. The position is a zero-based offset from
the beginning of the le specied by the lehandle which is passedas the parameter. It is

http://www.perldoc.com/perl5.8.0/pod/func/sprintf.html

126 Chapter 8 Files and Filehandles

frequently used with seek() to move the le pointer about in a le for reading or writing.
This is an example which deducesthe size of a le by using seek() and tell()

use Fentl ':seek’

sub getFileSize ($) {
my $filename = $ [0];
local *FILE;
open FILE, "<$%filename" or return undef;
seek(FILE, 0, SEEK _END);

my $size = tell(); # last filehandle read is FILE
close FILE;
return $size;

}

my $filename = $ARGV[O];

print "$filenameltit’, getFileSize($filenam e), " Bytes \n"

However, on a system that supports stat() this can be satisfactorily replaced by

(stat($filename))[7]

8.3.7 close() — Close An opened File

At the end, when you have nished working with a lehandle, you should close() it. Simply
passthe lehandle asthe parameter to close()

8.4 Directory Traversal Functions

In this section, | will intr oduce to you various functions you can useto traverse the dir ectory
structure of your system. Note that you ought to be using File::Find , which is easierto use
and more exible. In fact, it usesthe functions that we cover below. However, some simple
dir ectory traversal operations may be more ef cient if you implement them dir ectly.

Description of the functions is presented rst. You will nd afull example afterwards which
usesthesefunctions to build aclasswhich performs le search.

8.4.1 opendir() — Opens A Directory

opendir DIRHANDLE, PATH

This function preparesthe directory PATHfor subsequentdir ectory traversal functions. If the
dir ectory exists, a true value is returned, and populates DIRHANDLEwhich is a lehandle.

© 00O ~NO UL WN P

W W WNDNNDNNNMNMNNNNNRPRPRPRPRPRPERPERPERPRERPREPE
NPFPOOWONOOULA, WNPEPOOONOOO A~WDNPEO

8.4 Directory Traversal Functions 127

8.4.2 readdir() — ReadsDirectory Index
readdir = DIRHANDLE

Thereaddir() function readsthe content of the directory referred to by DIRHANDLE which is
populated by the opendir() function. In scalar context, eachreaddir() invocation returns
an entry in the directory. When there is no more entry, undef is returned. This is similar to
the behaviour of read() saw earlier. You may also get all the entries in one go by calling the
function in list context, and an array containing all the entries inside will be returned.

8.4.3 Example: File Search

In this example, we will write a classthat allows usersto search for a le recursively in a
dir ectory treewhose hame matching a pattern speci ed by the user. The pattern is in the form
of a regular expressionfor convenience purpose. It is by no means versatile as File::Find
but it will give you an idea of how to use the dir ectory traversal functions.

EXAMPLE 8.1 File Search

Fil eSearch. pm
An Exanple File Search nodul e

package Fil eSearch;

Create a new class instance (object)
sub new {

my $arg0 = shift;

ny $cls = ref($ arg0) || $argo;

ny $this = {};

bless $this, $cls;

$this->initialize(@);

return $this;

sub initialize {
my $this = shift;
ny %ptions = @;
foreach (keys %options) {
$this->{$ } = $options{$ };

}
}
sub find {
ny ($this, $path) = @;
my @matches = ();
ny $pattern = $this->{' PATTERN };
| ocal *DI RENT;

opendir DI RENT, $path or return ();

CGet a list of entries in this directory,

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

~No o~ wWwDN PR

o

10
11
12
13
14
15
16
17

128 Chapter 8 Files and Filehandles

and sort it |exicographic al ly
my @ntries = sort { Ic(%$a) cnp [c($b) } readdir (D RENT);
foreach ny $fn (@ntries) {
ny $entry = "$path/ $fn";
Recursive search if the entry is a directory,
\W should ignore . and .. in our search
if (-d $entry and $fn ! m \.\.28/) {
push @t ches, $this->find($entry);
}
$fn = m$pattern/ and push @mtches, $entry;
}
cl ose DI RENT;
return @mtches;
1
L

The program below usesthis module, getting the root of the search as well as the search
pattern from user input, and usesthe module to get alisting of les found. Finally, the list of
les together with the corresponding le sizesare displayed:

#![usrlb inlperl -w
use Fil eSearch;
my ($pattern, $dirroot);

print "Please specify the filename pattern by means of a regular expression:\n{
>> "

chomp($pattern = <STD N>);

print "Please specify the root of directory tree to be searched:\n>> ";

chonp($di rroot = <STDI N>);

my $searchobj = new FileSearch('P ATTERN => $pattern);
ny @esult = $searchobj ->find($dirroot);

foreach (@esult) {
print $, " (", (stat($))[7], " bytes)\n";
!

The transcript of a sample sessionis shown below. It searchesfor les whose extension is
.pm. Therefore, alist of Perl modules in the dir ectory treeis shown.

cbki hong@hbkih ong: /d ocs/perltut/src/files$ perl search. pl

Pl ease specify the filename pattern by neans of a regul ar expression:
>> 7 %\ pnd

Pl ease specify the root of directory tree to be searched:

8.5 File TestOperators 129

>> [hone/ cbki hong/d ocs/ per| t ut

[hone/ cbki hong/ docs/ per |t ut / scrap/ Nunber . pm (344 byt es)

[hone/ cbki hong/ docs/ per | tut/src/ch06/Controller.pm (916 bytes)

[hone/ cbki hong/ docs/ per | tut/src/ch06/ Stats. pm (1264 byt es)

[hone/ cbki hong/ docs/ per | tut/src/ch06/ Stats2.pm (779 bytes)

[hone/ cbki hong/ docs/ per | tut/src/ch06/ Stat s3.p m (425 byt es)

[hone/ cbki hong/ docs/ per |t ut/src/ch06/ Test Coj ect . pm (198 byt es)

[hone/ cbki hong/ docs/ per | tut/src/ch06/ Ti mer. pm (1011 byt es)

[hone/ cbki hong/ docs/ per | tut/src/ ch06/ Traf ficLi ght.pm (642 byt es)
[hone/ cbki hong/ docs/ perltut/src/files/FileSearch. pm (796 bytes)

The chomp() function removesthe trailing newline characterfrom the variable containing an
input string if one is present. Note that the argument must be an Ivalue becauseit performs
in-place editing of the string instead of returning the modi ed string.

The FileSearch::find() method is a recursive subroutine which takes a single parameter,
that is the basedir ectory in which to search for les matching the speci ed pattern, which is
passedto the FileSearch object upon instantiation. The search itself is a depth- rst search.
That means at each level, for each directory entry the content of the directory is searched
before the next dir ectory is searched. Note that we have to avoid . and .. in eachdirectory. In
Appendix Cin my discussion of hard links | explain what thesetwo entries are. They refer to
the current and the parent dir ectory, respectively. Becausethey go up instead of go down the
dir ectory tree,we should not delve into them.

This program looks ne. However, this search implementation can causethe search to go
into an in nite loop on Unix systemsin a certain case. That happens if two path segments
on a path point to the sameinode. First, let us agree on the terminology rst. A path like
/a/lblc/d consistsof four path segmentsa, b, c and d. Now, let us assumeb and d point to
the samedirectory inode (for an exhaustive explanation of inodes, pleaseread Appendix C).
Now c is a directory inside b. However, c is also a dir ectory inside d becauseb and d are
actually just two aliasesrepresenting the sameinode. Therefore, /a/b/c/d/c is still a valid
path, and we can nd the directory entry d inside, sowe have the path /a/b/c/d/c/d. It is
obvious that this circularity will continue endlessly, and obviously you will gointo anin nite

loop asaresult. This is exactly the reasonwhy we have to avoid delving into . and .. in the
program. Therefore, this problem normally should not occur. It only ariseswhen a hard link
is created manually that makes two dir ectories point to the sameinode. The core dif culty

is that you cannot easily identify this circularity in the program becaused appears exactly
like any other dir ectory entries. You are hereby askedto think of away to patch this potential
problem. (hint: usestat())

8.5 File TestOperators

Perl provides you with asetof le testoperators that you canuseto testa le against certain
properties and return atruth value. Table 8.2lists the most commonly used operators:

Note that many of these options are speci ¢ to Unix operating systems.-e, -f ,-d,-z and -s
can be used on most operating systems. The only parameter is either a lename or, in case
the le hasalready beenopened, its lehandle. For example, to ensure a certain regular le
(abc.txt) exists,you canissuethe following statement:

130 Chapter 8 Files and Filehandles

Operator Description

-r File is readable by effective user or group.
-w File is writable by effective user or group.
X File is executble by effective user or group.
-0 File is owned by effective user.

-R File is readable by real user or group.

-W File is writable by real user or group.

-X File is executble by real user or group.

-0 File is owned by real user.

-e File exists.

-Z File is empty (zero size).

-S File is not empty, size in bytes asreturn value.
-f File is aregular le.

-d File is a dir ectory.

-| File is a symbolic link.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

Table8.2: File TestOperators

(- "abc.txt" && -f "abc.txt")
or die "abc.txt not found or is not regular fileh\n";

Notice there are two setsof operators to test whether a le is readable/writable or executable.
In general, you should usethe lower caseversion instead of the uppercaseversion becausethe
lower caseversion usesthe effective user or group identity , which always re ect the identity

of the user or group under which the program is executed. You can get further information

on effective and real user and group in Appendix C with respectto setuid or setgid les.

8.6 File Locking

File locking, or locking in general, is just one of the various solutions proposed to deal with
problems associatedwith resource sharing. Sharing of resources frequently arisesin our
everyday life. Driving on a highway, boarding an elevator etc. are all manifestations of
utilization of shared resources. In a computer program, you — the developer — have access
to disks, peripheral devices etc. within a program that appears to be self-contained, which
in turn leads you into thinking your program has exclusive accessto these resources. No,
you don't. Resource sharing is equally ubiquitous as, if not more than, in your daily life.
In your computer system there may be a few hundred programs in execution (processes.
Many of them are hidden so you may not know they are running. However, with just one
Central ProcessingUnit (CPU) only one of them can be executed at any instant. Therefore,
the CPU actually performs a context switch at regular, but very short intervals when a
currently-running processis suspended from execution by the CPU with its execution state
saved, and another processis resumed. This context switch is performed so frequently that to
a user there is a perception that all processesare executed concurrently, but they'r e not. This
is already one example of resource sharing, and the solution is to intr oduce ne-grained time

© 0O ~NO UL~ WDN P

NNNNNRERRRRRRRR R
ARWNRPROOOWMNODUNMWNEREO

=

8.6 File Locking 131

slicing . Similarly, all programs that are executing have accesdo the disks. Therefore, it is not
surprising that when a program is accessinga disk it is possible you can nd another one that
is also trying to accesshe disk at the sametime, too.

File locks are intr oduced to settemporary restrictions on certain les to limit how they can
be shared among different processes.Depending on the nature of an operation, we come up
with two types of locks. The rst type is a shared lock, and another one is an exclusive lock.
With respectto les, read accesscan be shared by multiple processesbecauseread access
doesnot result in any changesto the state of the shared resource. Therefore, a consistent view
of the shared resource can be maintained. Write accesshowever, should by nature be carried
out with exclusive accessuntil the write operation is complete. Another write operation to
the le which occurs before the current one is complete should be queued (certain casesmay
require it be cancelled instead, depending on the nature of the operation). A read access
cannot be concurrent with a write accesseither becausethe write accesswill destroy the
consistent view expected by the read accesswhile it is still reading (for example, the write
operation may be to delete the le altogether, while the read operation is still in its midway).
Therefore, the solution is to intr oduce shared locks for read accesswhile exclusive locks for
write access. Multiple concurrent shared locks are allowed. However, exclusive locks are
mutually exclusive.

On most Unix systemsaswell asplatforms in the Microsoft Windows NT family (including
Windows 2000,XP and Windows Server2003asof this writing) you may use a handy flock()

function. Pleaseseethe “Function Implementations” section of the perlport manpage to see
any platform-speci ¢ issuesfor your platform. Hereis an example demonstrating le locking:

#[usrlb in/perl -w

witer.pl
Wites into nyfile.dat

use Fentl ":f lock';
open(FILE, ">>nyfile.dat") or die "Cannot open nyfile.dat! \n";

print "[$$] Requesting exclusive wite lock for nyfile.dat.\n";
flock(FILE, LOCK EX);
print "[$$] Requested exclusive wite |ock for nyfile.dat \n";

print "[$$] Witing (appending) to nyfiledat. \n";
Any wite operations should be put inside
foreach ($ARGV[O]..$ARGV1]) {

print "[$$] Witing $_\n";

print FILE "$_ (process id $$)\n";

sleep 1; # sl eep one second

}

flock(FILE, LOCK UN); # rel ease | ock
print "[$$] Released exclusive wite lock for nyfiledat \n";
cl ose FILE;

#![usrlb in/perl -w

© 00 ~NO Ul WN

NNNRPRPRRERRRRRRR
NP, OOW®W~NO®UNWNIERO

132 Chapter 8 Files and Filehandles

reader .p |
Reads fromnyfile.dat

use Fentl ":f lock';
open(FILE, "<nyfiledat") or die "Cannot open nyfiledat! \n";

print "[$$] Requesting shared read lock for nyfiledat. \n";
f1 ock(FI LE, LOCK_SH);
print "[$$] Requested shared read lock for nyfile.dat.\n";

print "[$$] Reading fromnyfile.dat \n";
while (<FILE>) {

sleep 1;

print $;
}

flock(FILE, LOCK_UN); # rel ease |ock
print "[$$] Released shared read lock for nyfile.dat. \n";
cl ose FILE;

This example consistsof two programs, namely the writer and the reader. The writer program
writes some sample data into a data le, while the reader program reads from the data le
previously written data. The writer takestwo command-line parameters which determine
the values to be written to the data le. It rst acquiresan exclusive lock. When the lock is
acquired, it starts writing the values to the le. When the write operation is complete, the
lock is released. The reader works in a similar manner. It rst acquires a shared lock, and
when oneis acquired it starts reading from the le. At the end, the shared lock is released.To
try this example, open two or more commnad-line windows on your desktop environment
and try different combinations, such as a writer in a window and a reader in another
(writer -reader), reader-reader and writer -writer . Take the writer -reader asan example, when
you executethe writer program in one window by

perl writer.pl 115

That means 15 lines of records will be written into the data le. You will seethat there is
a 1-second pause between each write, becauseof the sleep() function. It is inserted after
eachwrite or read so that you can have ample time to switch to another window to execute
another writer or readerinstance. Now switch to another window and start the reader before
the writer has nished writing. No command-line parameters are needed for the reader. You
will nd that the reader stalls while trying to acquire a shared read lock becausean exclusive
lock is already in place. When the writer completes, the reader will be able to get the shared
lock and proceedswith reading. If you try the reader-reader combination, you ought to nd
that concurrent readersare allowed, which agreesto what | told you earlier.

flock() acceptstwo parameters. The rst one is the lehandle. The second argument
indicates the locking operation required. Justlike the casefor seek() , it is just an integer
whose mnemonic constants can be found by importing the Fentl module, by importing the
symbol “: ock'. The shared lock is representedby LOCKSHand the exclusive lock by LOCKEX

8.6 File Locking 133

To releasea lock you can specify LOCKUN You may optionally bitwise-or LOCKNBwith either
LOCKEX or LOCKSH to indicate non-blocking. As demonstrated in the example, an flock()
call will be blocked until the lock is acquired. With this optional ag, you may chooseto skip
if it fails and do something else,or you may retry it later on. The prede ned variable $$ refers
to the current processID. It is displayed aswell assavedto le to let you easily identify the
various processes.

134 Chapter 8 Files and Filehandles

Chapter 9

Regular Expressions

9.1 Introduction

Now we are marching into probably the most exciting chapter in this tutorial. Regular
expressions (regexps, or even RE) are what makes Perl an ideal language for “practical
extraction and reporting”, asthe name implies. To give you an idea, let me rst give you an
overview on how to perform pattern matching in Perl.

First, you construct the regular expression, which is essentially a sequenceof characters
describing the pattern you would like to match. The term “pattern” may seema little bit
foreign to you, but you may actually have had some experience of it already. For example, in
MS-DOSIif you would like to list all les with the extension .txt (presumably text les), you
may issue a command like

dir *.txt

On Unix-like operating systems,similarly , you can specify

I[s *txt

The“*txt " herecan be described asa pattern asit is the speci cation used by the operating
system (strictly speaking, the shell, i.e. the program in charge of reading commands from
you and displaying output) to look for the les that hasto be displayed. This is avery simple
pattern, but Perl provides users with avery powerful set of regular expressionsthat can be
used to specify the patterns, so you can make your search speci cation more specic. After
constructing the regular expression,you can then bind the data to be searched (for example,
text les or just a line of user input) to the pattern using the binding operators = or !

In this process,you have provided the Perl regexp engine with both the data to search for
and the data to be searched. The return value indicates if pattern matching is successful. If
it is successful,you may want to store the data temporarily, or in a le, or export the results
dir ectly to the standard output.

Regular expressionsare used in Perlin anumber of ways:

? Seach for astring that matchesa speci ed pattern, and optionally replacing the pattern
found with some other strings

135

ga b~ wN PP

136 Chapter 9 Regular Expressions

? Counting the number of occurrencesof a pattern in a string

? Split a formatted string (e.g. a date like 02/06/2001) into respective components (i.e.
into day, month and year)

? Validation of elds receivedfrom submitted HTML forms by verifying if a piece of data
conforms to a particular format

? ...and much more

Regular expressionsare not exclusive to Perl only. It is a vital component in Unix and other
Unix-like operating systemslike Linux to provide userswith powerful text search and replace
capabilities. You may nd that many software on Unix, like grep and awk, allows usersto
use regular expression to specify search speci cations (although their implementations are
slightly different from that of Perl). Although this is still rarein Windows, many new software
with regexp capabilities are emerging becausemany famous Unix applications are now being
ported to Windows and other system platforms. Moreover, a large set of Perl regexps are
now being adopted in JavaScript and JScript implementations in Netscape and Microsoft
Internet Explorer respectively. This is a piece of good news as sophisticated input validation
can now be performed directly by the end users' browsers. In this way, invalid data can
be detected without sending anything to the server that causesthe transmission delays. In
C/C++ thereare alsoregular expressionlibraries that programmers can easily use for adding
regexp capabilities to their programs. That explains how useful regular expressionsare in
programming nowadays.

As you may know there are books dedicating in their entirety to regular expressionsin
your local bookstores. Therefore, this chapter is by no means a complete coverage of
regular expressions in ne detail. However, after you have nished this chapter you
should appreciate how exible and powerful regular expressionsare in Perl and in Unix-
like operating systems,and how they canaccomplish tricky text manipulating tasksonthe y .

9.2 Building aPattern

9.2.1 Getting your Foot Wet

Now you will learn to build a pattern using the regular expressionsoffered by Perl. To search
for a pattern match, simply construct the pattern and put it in between the two slashesof the
m// operator. If you don't need the bells and whistles, for example, you just need to know if
the characters“able ” appear in any given string, the pattern is assimple as:

m/able/

Let's put this to atest. Now, to seeif this pattern occursin the string “Capable ", we bind the
twos together by using the binding operator = . Try this script:

if ("Capable" = miable/) {
print "match!\n";

} else { # Thi s shoul d NEVER happen
print "no match!\n" ;

}

9.2 Building aPattern 137

There is not many things special here. Becausethe pattern “able ” is in the string “Capable ”,
the words “match! ” will be displayed. | intentionally usethe literal “Capable " in the example
to show that although the symbol looks like an assignment operator, it is not necessaryfor a
valid Ivalue on the left hand side of the binding operator (remember Ivalue is for assignment
operators only). You may put any piece of scalar data, including scalar variable, in place of
the string literal.

9.2.2 Introduction to m// and the Binding Operator

As you have seenin the above example, the m// operator is used for pattern matching. In
between the forwar d slashes// the pattern to match is placed. Additional options, if any, are
placed at the end after the last slash. If an expressionis explicitly bound to the operator using
the = or! binding operators, that expressionis searched for the pattern speci ed. If the
binding operator is missing, asyou will seein some later examples,= is assumedand $_is
taken asthe expressionto be searched.

In scalar context, the binding operator = returns atrue value if the expression matchesthe
pattern, an empty string (and hence a false value) if otherwise. ! simply inverts the logic
sothat if the expressionmatchesthe pattern a false value is returned, a true value otherwise.
Therefore, the following two expressionsare equivalent:

I($expression =" m/pattern/)
$expression " m/pattern/

Similar to double-quoted strings, the pattern may be interpolated. Therefore, you can
generate patterns at runtime and apply them by, for example,

$expression =" m/$var/

Again, similar to the case of quoted strings, you may use other symbols in place of // .
However, if you use // , you may omit the prex m You may wish to use other symbols
in place of // if your pattern is heavily slashed, for example, to match a Unix path name
Ivarflogs/httpd/er ror _log in an expressionyou have to escapethe forwar d slashes(to be
covered later) like this:

Sexpression =" mAvarVlogsVhttp dv err or_lo g/

In the manual pages, this is described as the leaningtoothpicksyndiome(LTS) where a lot of
forwar d and backward slashesare present,making the pattern itself dif cult to recognize. If
you changethe symbol to, for example, j, then the entire pattern suddenly becomesclear:

Sexpression =" mjivar/logs/httpd/e rro r_| og|

This is just one of the methods to remove the leaning toothpick syndrome. We will talk about
the m// operator in more detail later in this chapter, together with the options you may use. |
am just giving you ataste of it now anyway.

138 Chapter 9 Regular Expressions

9.2.3 Metacharacters

The list of metacharacterssupported in Perl are listed in Table 9.1

Metacharacter Default Behaviour

n Quote next character

) Match beginning-of-string

Match any character exceptnewline
Match end-of-string

Alternation

Grouping and savesubpattern
Character class

eSS —

Table9.1: Metacharacters Perl

Metacharacters serve speci ¢ purposes in a pattern. If any of these metacharactersare to be
embedded in the pattern literally, you should quote them by pre xing it by n, similar to the
idea of escapingin double-quoted string. In fact, the pattern in between the forwar d slashes
are treated asa double-quoted string. For example, to match a pair of empty parenthesesand
executea code block if they can be found, the code should look like

if ($sting =" mA()) {
..
}

In the previous section we mentioned the leaning toothpick syndrome. Apart from changing
the delimiters of the m// operator, you can suppressthe effect of metacharactersby using
the nQ ... NnE escapesequence. This does not suppressinterpolation, however. This is
demonstrated in the following example:

$expression =" m/\Q/var/logs/httpd fer ror _lo g\ E/

j speci es alternate patterns where matching of either one of them results in a match. These
patterns are tried from left to right. The rst one that matchesis the one taken. Usually, |
are used together with parentheses() to indicate the groupings preferred. Theseare some
example patterns:

m/for|ifjwhile/ # A match if either ‘for, if or ‘while" found
m/a(alb|c)a/ # A match if either ‘'aaa’, ‘'aba’ or ‘'aca’ found

Apart from indication of grouping, the use of parenthesesalso carries another behaviour. If
thereis a pattern match, the expressionmatched by a grouped pattern is saved. This is called
backtracking . Backtracking is covered in more detail later in this chapter.

The . metacharacter matches any character. By default, it does not match any embedded
newline charactersin a multi-line string. However, if the s option of m/ is given, embedded
newline characterswill be matched. This is convenient if you have to match a pattern across
multiple lines.

9.2 Building aPattern 139

"a\nb\nc" =" mla.b/ # Not matched, because . does not match \n

"a\nb\nc" =" ml/a.b/s # Matched with 's' option

The ™ metacharactermatchesthe beginning of the string, and $ matchesthe end of the string.
However, if the moption of m// is given, they match the beginning and the end of eachline
respectively. This is used to match individual lines inside a multi-lined string.

"a\nb\nc" =" m/a$/ # Not matched
"a\nb\nc" =" m/fa$/m # Matched

9.2.4 Quantiers

Quanti ers are used to specify how many times a certain pattern can be matched consecu-
tively. A quantier can be specied by putting the range expressioninside a pair of curly
brackets. The format of which is

fri[nll g

Here are the available variations:

{m} Match exactly — m times
{m,} Match m or more times
{m,n} Match at least mtimes but not more than n times

This example shows how you can verify if a string is an even number. Note that this ex-
ample canbefurther simplied with the help of characterclasseswhich we will describe next.

$string = $ARGV[0];
my $retval = ($string =" m/(\+]-){0,1}(0]1 [213] 4[5 6] 7| 8]9 {0 ,}(O] 2|4 |6] 8)$/) ;
printf("$string is%san even integer.\n", $retval?” " onot)

With different input values, dif ferent messageswill beprinted indicating whether the number
is an even integer. You may split the pattern into three sections. The rst part, (n+j-) f0,1 g
matchesthe preceding sign symbol if there is one. Note that the minimum number of times
is 0. Therefore, this part still matchesif the sign symbol is absent. Right after the optional
sign symbol are the digits. We establish that an even number has the least signi cant digit
being 0, 2, 4, 6 or 8. Therefore, on the far right we specify it asthe last digit. In between the
sign symbols and the leastdigit there canbe zero or more digits. This is how we arrive at this
pattern.

Perl de nes three special symbols to represent three most commonly used quanti ers. *
representsf 0, g; + representsf 1, gand ? representsf 0,1 g. Becauset is aquanti er asaresult,
it hasto be escapedin the example pattern above.

9.2.5 Character Classes

A characterclassincludes alist of characterswhere matching of any of thesecharactersresult
in a match of the character class. It is similar in some senseto alternation, but the way they

140 Chapter 9 Regular Expressions

are interpr eted is different. A character classis constructed by placing the charactersinside a
pair of square brackets. Here | demonstrate how to rewrite the pattern in the above example
using character classes.

my $retval = ($string =" m/[+-]?[012345678 9] *[0 2468]$ /) ;

It's alot shortened. Isn't it? All charactersthat appear inside the square brackets belong to
one character class. We have also used the special quanti er symbols described above to
further shorten the pattern. But that's not the end. You canfurther shorten the character class
comprising all digits by specifying in the form of arange:

my $retval = ($string =" m/T[+-]?[0-9]*[024 681%/);

You may de ne multiple ranges in a character class, for example, [a-zA-Z] matches all
lower caseand upper caseforms of English alphabets.

Inside a character class,if you pre x the list of characterswith ~, that means any characters
that are not listed resultsin a match. For example, [0-9] matchesany character provided it
is not numeric.

Perl also de nes some special character classesthat contain lists of common character
combinations in pattern matching.

Character Class Content

nw Alphanumeric charactersand _ ([a-zA-Z0-9 _])

nw Neither alphanumeric charactersnor _(["a-zA-Z0-9 _])
ns Whitespace characters([nt nnnrnf])

nS Non whitespace characters([" nt nnnrnf])

nd Numeric digits ([0-9])

nD Non numeric digits (['0-9])

Table9.2: SpecialCharacterClassesn Perl

Finally, our example pattern to match even integers can be simplied as

my $retval = ($string =" m/[+-]?\d*[02468] $/);

which is now the most compact form you can attain.

9.2.6 Backtracking

Parenthesised patterns have a useful property. When pattern matching is successful, the
matching substrings corresponding to the parenthesised parts are saved, which allow you to
savethem for further operations. For example,

9.3 Regular Expression Operators 141

$string = 'Telephone: 1234-5678";
if ($string =" m/Telephone:\s*(\d {4y -\d {4})8 {
print "The telephone number extracted is '$1'\n";

}

In this example, the telephone number extracted is saved as $1. There can be multiple
bracketed patterns in a given pattern. The matched substrings are numbered in ascending
order of position of the opening parentheses.If we changethe pattern asfollows:

$string = 'Telephone: (852) 1234-5678,

if ($string =" m/Telephone:\s*(\(N\ Ns *(\d{ 4}- \d{ 4})$ /) {
print "The telephone number extracted is '$1'\n";
print "The country code extracted is '$2'.\n";
print "The local phone number extracted is '$3'.\n";

The tel ephone nunber extracted is '(852) 1234-5678'.
The country code extracted is '852'.
The | ocal phone nunber extracted is '1234-5678' .

The pattern looks more complicated then it really is. If you examine it carefully, there are
threebracketed patterns in it. The rst one embracing the telephone number in full, including
the country code. The second and third are placed inside this bracket to extract the country
code and local phone number separately. The positions of the opening bracesdetermine the
ordering. Therefore, we can observe that in caseof nested parentheses,the outer one has a
smaller number than the inner one.

9.3 Regular Expression Operators

9.3.1 m// — Pattern Matching

As we have been using so far, the m// operator performs pattern matching. It supports
a number of options. We have covered mand s, and now it's time for a revision. The
s option treats the string being searched as if it consists of a single line only. By doing
so,. will match an intermediate newline character. The moption allows matching of indi-
vidual linesin amulti-line string. Here, 1 will intr oduce severalother commonly used options.

Thei option matchesin a case-insensitivemanner. Therefore,

'ABCD' =" ml/abcli

results in a match. By default, pattern matching is casesensitive. Another useful option is g,
which attempts to carry out aglobal pattern matching on the string. In scalarcontext, a search
pointer is maintained. The search pointer is rst initialized to the beginning of the string. In
each matching operation, matching starts from the search pointer. If a match is found, the
search pointer advancesto past the end of the matched substring. If matching fails, the search
pointer is resetto the initial position. You can usethe pos() function to retrieve the position
of the current search pointer.

142 Chapter 9 Regular Expressions

You can usethis option to nd out the position of occurrencesof certain patterns in the string.
The following example illustrates this point:

$string = 'Telephone: 1234-5678,
while ($sting =" m/(\d{4)ig) {
print "$1' found at position

(pos($string) - length($1)) . "AnY
}

'1234" found at position 11.
'5678' found at position 16.

In list context, the m/lg operator (with g) returns a list consisting of all parenthesised
substrings from the matching. Therefore,

my $string = 'Telephone: (852) 1234-5678';
my @list = ($string =" m/ Telephone:\s*(\((\d +)\ \s *(\ d{4} \d{ 4}))$/g) ;
@list = ((852) 12345678, '852', '1234-5678)

resultsin the list

@list = ((852) 1234-5678', '852', '1234-5678)

9.3.2 s/l — Searchand Replace

This operator is a powerful search-and-replace engine that you can useto exibly search for
certain patterns and replace it with a replacement string. The rst argument is the search
pattern, just asthe caseof m// . The secondargument is the replacement string. As you will
soon see,backtracking is immensely useful in this regard.

The options that | mentioned above that applies to m// also apply to s/// . But thereis a new
one. The option e causesthe replacement string to be treated as an expressioninstead of a
double-quoted string. That is, you canuse a combination of operators to generatethe desired
replacementstring at runtime.

Without the option g, only the rst occurrence of the pattern is replaced. With the option g,
all occurrencesof the pattern are replacedin one go.

Here are some examples:

$string = SNt/ " x 4leg; # change all tabs to 4 spaces
$string =" S/(})\n$/$l/s; # like chomp(), to remove trailing newline
9.3.3 tr/// — Global Character Transliteration

tr/ll is a convenient and efcient operator that changesa set of characters into another.
The rst argument is the character list to search for. The second argument is the character
replacement list. It builds a character translation map at compile time. At runtime, it
changesany charactersthat can be found in the string into the corresponding characterin the
replacementlist. For example,

9.4 Putting It All Together 143

trla-z/A-Z/

is just an alternative way to convert charactersto uppercaseform without using uc() .

9.4 Putting It All Together

144 Chapter 9 Regular Expressions

Chapter 10

CGIl Programming

10.1 Introduction

Up to this point we have beenwriting Perl scripts that are to be executed on the command
line. As | pinpointed early in this tutorial, the ability to write CGI programs with Perl is the
prime motive behind learning Perl for many people. In the following sectionswe will rst
look at what CGI is, and understand how it allows webmasters to create dynamic content.
Towards the end, | will intr oduce security issuesconcerning CGI scripting.

10.2 Static Content and Dynamic Content

10.2.1 The Hypertext Markup Language

The earliest Web servers only serve static content in the form of Web pages, or in a more
technical parlance, HTML les. A document written in the Hypertext Markup Language, or
HTML, is actually a plain text document with extra markup added that indicates the logical
structur e of the document. For example, consider the following HTML document:

<html>
<head>
<tite>A Sample HTML Page<i/title>
</head>
<body>
<p>This is a paragraph.</p>

Thi s is a hyperlink
</body>
</html>

Thisisavery simple HTML document. <p>..</p> denotesthe text in betweenis a paragraph.
It is then followed by animage of dimensions 80 60. At last, we insert ahyperlink that, when
clicked by auserthrough abrowser window displaying this document, will causethe browser
to load the resourceat the URI “http://www .cbkihong.com” into the browser window . This is
not an HTML tutorial, and if you are not familiar with HTML you should learn it rst before
proceeding with this chapter. But what | would like to demonstrate here is that a markup
language servesto differentiate different elements presentin a document. In this example,
the browser, having received and parsed the HTML document, nds out that the document

145

146 Chapter 10 CGI Programming

consists of a paragraph, an image and a link. Then the browser knows how to render the
markup and therefore createthe objectsspeci ed in the browser window . Becausea hyperlink
has dif ferent properties and actions from an image display, the browser needsaway to gur e
out the kinds of objectspresentin the document — and that's what HTML s for.

10.2.2 The World Wide Web

HTML documents are special asthey contain hyperlinks . Hyperlinks allow readersto jump
from one document to another document with a Uniform Resource Identi er (URI). For au-
thors, hyperlinks not only make referencing internal or external destinations more convenient,
they also bind these separate documents together in the form of linkages. Therefore, with a
single URI to an HTML document a reader not only can have accessto the document identi-
ed by the URI, but alsoresourceslinked to that HTML document. Suchlinkages bind all the
linked resourceson the Internet into a virtual network, and this is the World Wide Web we
are using every day.

The World Wide Web utilizes the Client-Server Model . First we need to establish what a
server and a client is. In everyday language, a server usually refersto a mainframe or other
powerful computational devices,in contrast to personal computers. However, in Computer
Scienceparlance, server and clients areidenti ed by their roles. A server refersto any entities
that provides servicesto clients. In the Client-Server Model, a client rst initiates a request
and addressit to the server. Upon receipt of the requestfrom the client, the server carries out
any necessaryactions to fulll the request, and then return the results as a responseto the
client. Therefore, typical interactions between a client and server in the Client-Server Model
can be visualized asin Figure 10.1

Web
Client Server

(1)
SN

e——

®)

z%yzg
LI IS

o
O

Figure10.1: A simpli ed HTTP client-serveiinteraction

Note that in the Client-Server Model, server and client do not necessarily refer to any physi-
cal devices. In previous chapters, you have learned how to construct modules that represent
objects, or in the procedural approach, representsa set of functions under the same names-
pace. This situation can t into the Client-Server Model too. The modules can be thought of
asproviding servicesto usersof thesemodules. In this case,the modules actasthe server and
a program that usesthesemodules actsasthe client.

Have you ever thought about what a Web server is? In fact there is nothing mysterious or

10.2 Static Content and Dynamic Content 147

complicated. It is merely a system with a suitable Web server daemon installed. A Web
server daemon is a small program that is executedin the background that handles HTTP re-
guests and responses. A Web browser is actually one of the forms of a user agent. When a
user enters a URI in the browser and hit the “Go” button, the browser, the user agentin this
case,sendsarequestto the Web server concerned encapsulating the command of getting the
resource located at the requested URI. The daemon capturesthis request, retrieves the speci-
ed resourceif any and returns the content of which to the client asaresponse. The browser
receivesthe resource. If it isan HTML document, it parsesand rendersit sothat the document
is eventually displayed in the browser window . Rendering refers to the processof convert-
ing HTML into the graphical objectsdisplayed in the browser window . The previous gur e
shown actually illustrates the interaction between the client requesting the HTML document
and the server processingthe request. The connectionsin the gur e are numbered such that
you can more easily refer to the explanation below to understand what eachmessage ow is
for.

The interaction between the client and the server is one of the main concernsof this chapter.
The client and the server may run on vastly different system architectures. For instance, the
Web server may be running on Solariswhile the client on Micr osoft Windows 2000.However,
acommon protocol de nes the common language of communication betweenthe two parties
so that platform-independent interaction is made possible. On the Internet, a single protocol
is de ned for the World Wide Web, which is the Hypertext Transfer Protocol, with the more
widely known abbreviation of HTTP. Enacted by the World Wide Web Consortium , or W3C,
HTTP is an open standard that can be freely implemented on any platforms.

Let us briey outline how documents can be made accessibleon the World Wide Web. The
administrator of the Web server setsaside a dir ectory (or folder) on the server. All the docu-
ments that are to be made accessibleon the World Wide Web are placed in this directory (and
subdirectoriesif any). When the URI is received by the Web server, this addressis mapped to
alocation in this dir ectory representing the resourceto be retrieved for the client.

(1) representsthe initial HTTP requestto the Web server. Before that, the Web browser has
to accomplish several preliminary tasks. This include transformations of the human-oriented
domain name and hostname in the URI to the IP addressnecessaryfor the Internet routing
system to deliver the requestto the intended Web server. After the IP addressof the Web
server is identi ed, the HTTP requestis encapsulatedin a packet and delivered to the Web
server. A packetis the container of the message.The requestis not sentasis. It is put inside the
packet as the payload, and the packet header contains all the necessaryinformation needed
to deliver the packet to the destination. This is analogous to a letter being placed into an
envelope before it is posted. The HTTP requestis similar to the letter, and the envelope with
the sender's/r ecipient's addressess similar to the packet and its header in this analogy.

Having received (1), the Web server will retrieve the document speci ed. From the le exten-
sion, the Web server recognizesthe resource asan HTML document and, therefore, returns
the content of the HTML document and marks it asof type “text/html”. This is exactly (2).

The client receivesthe packet containing the returned response. Note that a Web server may
return content of types other than HTML. For example, it may be a PDF document or simply
some audio clips. Therefore, a means have to be in place that allows the Web browser to
identify the type of the returned content. That explains why the returned content in (2) have
to be marked of type “text/html”. Upon knowing this is an HTML document, the browser
would parseit and draws the Web page in accodancewith the HTML received. Recallthat an

148 Chapter 10 CGI Programming

HTML document may contain external references(images, audio/video clips, external style
sheetsor Javascript, Javaapplets etc.) that have to be fetched aswell in order to display the
Web page properly. In the HTML document shown earlier, the image “logo.gif ” is the only
external referencethat hasto be fetched. Therefore, a requestfor this resourceis represented
by (3). The Web server, on receipt of (3), would return the resource and mark it as of type
“image/qgif ” (4). Note that if the HTML document hasmultiple external references,additional
connections hasto be made by the user agentto requestsuch resources.However, usually the
user agent will not fetch such external resourcesone by one. Consider a Web page consisting
of 30 images. It would be too time consuming to request eachresource sequentially as the
network can be slow. Usually, the browser will send multiple requestsat a time to the Web
server by opening multiple threads. The Webserveris alsolikely to be multithr eadedto allow
it to handle multiple incoming requestsconcurrently.

A Web server, in this way, servesonly static content. With the same URI, anybody would be
accessingexactly the sameresource at any instance. Also, visitors will not seeany dif ferences
across visits unless the les have been physically modi ed. Presentation of static content is
generally adequatefor many Web sites. However, in order for the World Wide Webto become
an interactive media, the ability to serve dynamic content is desired. Dynamic content is
usually achieved by writing scripts, especially server scripts. Thesescripts can generate the
output in real time to clients based on input from the clients and data stored in the server
database.Therefore, it is possible that every visitor to a Website serving dynamic content may
seedifferent layouts and content customized accoming to their preferences.That is what that
makes the World Wide Web a powerful and interesting media compared with conventional
media.

10.3 What is CGI?

In general Computer Scienceterms, an interface de nes a well-de ned way of interaction
between a system and external entities. Recall that in the object-oriented programming
paradigm, each class exposesitself to the outside through an interface consisting of meth-
ods and properties, and users of the classesdo not needto (and should not have to) know the
details of the implementation and, instead, accessthe objectsthrough their interfaces.

In Figure 10.1we saw the interaction between the Web server and the client. As the resource
is static (an HTML document on the lesystem), the Web server can return the specied re-
sourcesif they exist. However, if the resource speci ed is an executable script, the script will
then needto be executedbefore returning the generated responseto the client.

The Common Gateway Interface (CGI) speci es the mechanism through which the Web
server should pass data pertaining to the HTTP request to the server script, thus allowing
the server script to capture data from the client.

Compared with other protocol speci cations, the speci cation for CGl is intriguingly simple
and short that looks more like a tutorial rather than a speci cation . As you will see,the
principle behind the CGl is very easyto understand. Simply speaking, when the Web server
receivesa request for an executable CGI program, the program is executed. If the program
is an interpr eted one, it needsto invoke an appropriate interpr eter to executeit (which is the

1Someefforts of transforming the CGI speci cation into a formal speci cation with well-de ned grammar is
ongoing. Visit http://cgi-spec.golux.com for details.

http://hoohoo.ncsa.uiuc.edu/cgi
http://cgi-spec.golux.com

10.3 What is CGI? 149

NOTES

Note that not all Web servers have CGI script execution enabled. In fact, the admin-
istrator of the Web server needsto explicitly enable execution of CGI scripts, setup
a CGl script handler and associate le extensions of CGI scripts permitted (e.g. .pl
and .cgi) with it such that the scripts will be executed instead of being fetched and
displayed in the client's browser window! Execution of CGlI scripts pose certain lev-
els of security risks, and are especially dangerous if either the scripts contain alot of
security vulnerabilities or the Web serveris impr operly con gur ed. Therefore, many
Web hosting companies do not allow execution of CGlI scripts in freeaccounts. Some
Web hosting companies set up separate lesystems for hosting CGI scripts to pre-
vent damagesdue to CGI script attacks or malfunctioned CGI scripts from affecting
the entire lesystem. Later in this chapter | will intr oduce some techniques to write
more secure Perl programs to be deployed as CGl scripts.

perl executablefor the purpose of this tutorial). The program writes to the standard output,
and the content of which is then returned to the client.

In order for a CGl script to have accesgo certain information that are only known by the Web
server, such asthe remote IP addressof the client and the languagesthe client supports (which
isimportant to certain siteswhich servecontent with multiple language versions) that are only
available in HTTP requestheaders,the CGI stipulates the Web server to make available such
information by setting additional environment variables before the Web server executesthe
CGl program. Figure 10.2illustrates this point.

REMOTE_ADDR=210.3.88.100
REQUEST_METHOD=GET

GET /index.pl?lang=e HTTP/1.0 QUERY_STRING=lang=e

>I SCRIPT_NAME-=/index.pl
>
perl
o8 C o8 index.pl
I I I I I E I I I I I CONTENT_TYPE=text/html
<html> ... </html|>

Client Web Server

(210.3.88.100) (10.130.6.88)
Port 4014 Port 80

Figure10.2:CGl scriptexecution

The gur e shows the processof a client requesting the CGI script “index.pl”. The command
displayed is the actual HTTP requestbeing sentby the browser to the Web server, the syntax of
which complies with the HTTP speci cation. GETis the action that indicates the method used
to send the request. We usually use GETor POSTto send HTML form data to the Web server.
Following the action is the path to the resource requested. The browser removesthe domain
name or IP addressfrom the URI, asit is not used by the Web server to get the specied re-
source. At the end, the HTTP version is speci ed, and in this diagram, HTTP/1.0. Notice
the string after the question mark in the path. These are passedon the URI, and the Web

150 Chapter 10 CGI Programming

server extractsthe text after the question mark (if any) until whitespace is encountered. These
are parameters and are made available by the script by setting the QUERYSTRING environment
variable asindicated in the diagram. The diagram shows severalimportant environment vari-
ablesthat are usually setand their corresponding values. Note that some other environment
variables are setaswell, but the diagram would betoo largeto t in and are thus omitted.

As the script is being executed, it writes to the standard output asthe CGI response. Upon
completion of execution, the Web server collects the CGI responseand returns them to the
client, inserting any HTTP responseheaders necessaryat the top to comply with the HTTP
speci cations. In the diagram, it is assumedthe content returned is an HTML document, and
the type of which is indicated on the rst line of the response.This would becomepart of the
HTTP return header. HTTP headersare read and recognized by the browser but hidden from
users. The HTTP speci cation stipulates a blank line between the header and the content.
Therefore, you should put a blank line after the last line of the HTTP header, and no blank
lines should be presentbefore that.

There is a common misconception by many people, especially for those who are not familiar
with the CGI mechanism, to think Perl is CGl, or vice versa, which is highly erroneous. As
| have tried to explain previously, CGI itself is the mechanism that allows executable server
programs to accessinformation pertaining to the HTTP requestthrough standardized means
such as environment variables, instead of being a programming language. Therefore, it
is a fallacy to use the terms “Perl” and “CGI” interchangeably. In fact, any programming
languages may support the CGI mechanism. CGI programs are not con ned to interpr eted
languages like Perl or Python etc., compiled languages like C/C++ may also be used to
develop CGI programs that are used on a Web server. Therefore, the term “CGI script” is
not adequately generic, although most CGI programs are written in interpr eted languages,
preferably Perl. Therefore, it is discreetto refer to an executable CGl-enabled Perl script as
a “CGlI Perl script”. However, for the purpose of this chapter, | would use the term “CGl
script” to referto a“CGl Perl script”, for simplicity .

10.4 Your First CGl Program

Having understood all the necessaryconceptsyou need to know for CGI programming, it's
time to get your feetwet by building your rst CGI script in order for you to understand how
atypical CGl script is constructed.

In this section we are going to build an HTML form that contains a textbox for the visitor to
input his/her name, and a“Submit” button. After the user has pressedthe submit button on
the form, a CGl script will beinvoked that prints a phrase of greeting basedon the time of the
server. Therefore, both the form and the script needsto be written.

EXAMPLE 10.1

HTML Form (greeting.html)

<! DOCTYPE HTM. PUBLIC "-//W3C//DTD HTM. 4.0 Transitional //EN"
"nttp:// wwmv.w3. org/ TR/REC- ht m 40/ | oose. dt d" >
<htn >

10.4 Your First CGI Program 151

Greeting Script (greeting.pl)

1
2
3
4
5
6
7
8
9

W WWWWWNDNNDNNNNNMNNNRPRPRPEPERPEPRPEPRRREPR
OGP WOWNPFPOOONOOOOPWNREPOOONOOOUGMWDNLEDO

152 Chapter 10 CGI Programming

In order to executethe CGI script, you will need a Web server account that allows execution
of CGI scripts. There are a couple of free Web hosts on the Internet that lets you deploy self-
written scripts. | have used and am satis ed with the service of Spaceports but you may nd

better bargains elsewhere. Suchfree CGI hosts are excellent placesfor you to becomefamiliar

with CGI Perl programming before you are sophisticated enough to set up your own Web
server for development or get more powerful hosting packagewith paid hosts. If you would

like to setup your own Web server for testing, please ip to Appendix- B for installation and
con guration instructions.

Upload both les to your Web server account. Put the script in the samedir ectory asthe form.
Pleasenote that some Web servers set aside a “cgi-bin” directory inside your accountwhere
CGil scripts are only allowed to be executed inside. For some accounts, CGI scripts may be
placed and executedanywherein your account. This is subjectto the server con guration and
you should consult the system administrator for details. Anyway, in short, put both les in
the samedir ectory where CGI script execution is allowed.

Next, you will need to give your les the correct accesspermissions if your account is on
Unix-variant systems. Changing accesspermissions is commonly known as“chmod”. Most
probably you would be using FTP (File Transfer Protocol) clients to upload your les to your
Web server account. You will need to use an FTP client that supports chmod, like WS-FTR
leechFTR SmartFTP on MS Windows systems. If you are using Linux with X-Windows in-
stalled, most probably you may want to check out gftp or kbear. If you have telnet/SSH ac-
cessto your accountor you have dir ectaccesgo your Web server lesystem, you may chmod
on the command line too, but I'm not going into details here asthey are very basicskills Unix
usersshould have already beenfamiliar with.

The chmod values to give to each le and their corresponding verboserepresentationis:

greeting.html: 644 (rw-r--r--)
greeting.pl: 755 (rwxr-xr-x)

Now you are ready to test your script. Enter the URI of greeting.html in the address eld of
the Web browser and pressEnter. Pleasecheck with your system administrator or relevant
instructions from the hosting service on the URI to use. The form should be loaded. Enter
your name and click “Submit”, and a messagewill be displayed if there aren't any errors.

Both the HTML form and the CGl script are indeed very simple. Compared with earlier
scripts executed on the command line, several elements are new. First, we have used the CGI
module to fetch the HTML form data in the form of name-value pairs to the CGI script. Next,
on line 12we print aline containing the content type information. The “r eal” serverresponse
in HTML format is between line 24 and 33.

The CGI module is the preferred way for a Perl 5 CGI script to handle CGl-related operations.
There are two major operations a CGl script needsto handle in particular. It needsto check
if there are any incoming data being passedto the script. Such data are usually passedto the
script as parameters on the URI (the GET method) or asform data (the POSTmethod). The
script is then executed,and results from execution have to bereturned to the client through the
Web server. The HTTP user client (presumably the Web browser) capturesthe responseand
rendersit in the proper way as previously mentioned. In this example, incoming parameters
are fetched by the CGI module and returned as a hash reference ($params) by the Vars()

object method. This is usually the most convenient way to get all the incoming parametersin

http://www.spaceports.com

© 00O ~NO UL WN P

e e e
A WNRO

10.4 Your First CGI Program

153

' : itz (28 _J=lx]
2B (L) #WEE(E) THfR(v) B2(c) EHe) TE() REE) WEMW) fEAH)

%\ ; I'u"'|
) ATOTR BRI NN IO
B fIE (0): ||. http://www.cblkihong.com/temp/greeting.html '| ' »

Please enter your name:

|Bernarc1 Submit

Figure 10.3: The“gr eeting” scriptin action

a single operation. The module actually parsesthe CGI environment variable QUERYSTRING
which can be obtained by $ENVf'QUERY_STRING'g. Many Perl programmers (and some Perl 5
book authors alike) tend to write their own code of getting HTML form data. An example is
quoted below:

if ($ENV{'R EQUEST_METH®'} eq 'P OST') {
read(STDIN, $buffer, $ENV{' CONTENT_LENGH });

} else {

$buf fer = $ENV{' QUERY_STRI NG };

}

@airs = split(/&, S$huffer);

foreach $pair (@airs) {
($nane, $value) = split(/=/, $pair);
$value = tr/ + /;
$value = s/%[a-fA-FO-9][a-fA-FO-9])/p ack("C', hex($1)) /eg;
$FCORV $nane} = $val ue;

}

The problem is evident. It requirestoo much typing, and you are actually reinventing the
wheel. BecauseCGl is now a standard module bundled in every Perl distribution, there is
hardly areasonfor not using it. Also, the code snippet aboveis not tolerant against malformed

URIs or alternative URI formats. For example, some scripts still use the old convention of
separating key-value pairs by ; instead of & Unlessyou are very familiar with such alternative
formats, many of which are not well documented in standards or speci cations, your codewill

fail with such URlIs. On the other hand, the CGl module was carefully developed and hasbeen
under constant scrutiny by the Perl community to recognize as many alternative formats as

154 Chapter 10 CGI Programming

possible. As aresult, it is more reliable and well-maintained, not to count its easinessof use.
It is instructive to understand how we can get the form data from the environment variables
though becausein this way you would understand more about the CGI speci cation, yet you
are not recommended to get the form data manually in your production code.

Recall that earlier | mentioned the Web server would include the content type in the return
response. Line 12is doing exactly that. For static content, the Web server knows the type of
content being returned. However, this doesnot hold for CGlI scripts asit is the CGI scripts that
decide on the content to return. Therefore, the script should supply this piece of information
by the Content-Type header eld. Content-Type is one of the most frequently used declaration
in HTTP headers. HTTP headers have to be print ed before the real content, and an empty
line should exist between the header lines and the content. Web browsers look for the header-
content boundary in this way so that it can hide the headers properly from users. As no
more headersare speci ed after the content type line in this example, the extra empty line is
produced by two consecutive nn.

A CGl script does not have to generate all necessaryHTTP headers becausethe Web server
should generate them automatically. An exception is Content-Type , for the reasonthat |
have just explained. Apart from de ned HTTP headers your scripts may generate other
custom headersyou prefer. However, becauseCGI scripts are usually rendered in browsers,
unrecognized headersare generally ignored, anyway.

10.5 GET vs. POST

In the previous example, we have used a form to transmit user-speci ed data to the server
CGil script. Note that we have used the GET method to passthe form data, as characterized
by the method property of the form element. However, another method POSTis also available.
Here we shall discusswhat they are and how they differ from eachother.

To start with, let's investigate how the form data are transmitted in eachcase.Both methods
involve construction of a query string of the following format:

namel=valuel &name2=valu e2&...

Recallthe HTML form listed in greeting.html. <form> ... </form > enclosesthe form. Inside
the form, we can nd atext entry control, whose name attribute is “name”. Each control in
the form should have the name atttribute set. When data is transmitted to the server script, as
there may be severalpiecesof data sentin the sameform, every piece of data hasto belabeled
with a name so that the server script can dif ferentiate the values. The name is setasthe name
attribute in the corresponding form control. In this example, asthereis only one control, there
is only one name-value pair in the form. Expressedin the above format, that is:

name=Bernard

What if the name or value contains the charactersé& or =? In fact, non-alphanumeric characters
in the name or the value is encoded, in a manner compatible to RFC2396for areasonthat is to
be explained shortly. This document documents the format of Uniform Resource Identi ers,
of which Uniform Resource Locators form a subset. The URI encoding scheme stipulates
all characters except alphanumeric charactersand a few unreserved characters (section 2.3)
should be encoded, and this is achieved by representing the character by the hexadecimal
representation of its ASCII value precededby the character“%”. Examples:

10.5 GET vs. POST 155

Bernard%20Chan # Bernard Chan
100%25 # 100%
A%26B%20Associates # A&B Associates

However, as the space character frequently occurs in data to be encoded, there exists an
alternative representation of the spacecharacter by the character “+”. Therefore, if you are
parsing the form data manually yourself (which you are discouraged to do so as explained
earlier) you should ensure “%20” and “+" are both treated as the spacecharacter. This also
explains why it is desirable to use CGl.pm, as to decode properly is not a trivial affair in
itself. By using CGl.pm, you don't even have to care such details — it is handled for you
automatically.

Having examined the encoding mechanism used on form data, it's time to look at how form
data is sentusing methods GET and POST

In the GET method, the query string is appended to the end of the script URI, separated by
the “?” character. The form data is part of the HTTP command. That explains why the URI
encoding schemeis used for the construction of the query string. An example of the exact
HTTP command:

GET /temp/greeting.pl? name=Bern ar d+Chan HTTP/1.1

followed by a seriesof request HTTP headers. These headers together with the values are
made available to the CGI script by setting environment variables aswell. The environment
variable name is the corresponding header eld name with the pre x “HTTP ” and all
hyphens replaced by underscores. For example, the server script can retrieve the value of
User-Agent in the HTTP header by querying the environment variable HTTP _USER AGENT.

In the CGI speci cation, it is explicitly mentioned that the value of the QUERYSTRING envi-
ronment variable be set to the query string, that is name=Bernard+Chan in this example and
the CGI application should parse this variable to retrieve the form data. Note that by using
the GET method, beccausethe query string is embedded as part of the URI, it would also be
displayed in the URI in the HTTP response.

On the other hand, by using the POSTmethod the query string is not embedded in the URI.
The exactmechanismis a little bit more complicated. An example of the HTTP command is:

POST /temp/greeting.pl HTTP/1.1

again, followed by a seriesof HTTP request headers. However, this time we have an addi-
tional line at the end:

Content-Type: application/x-www- for m-urle ncoded

This indicates an HTML form is going to be sentto the server script. The browser then sends
the following line:

Content-Length: 17

This indicates that the forthcoming form data in the form of a query string is of length 17
bytes. The server script can get the content length by querying the environment variable
CONTENILENGTH The query string is then sent to the server script. In the CGI mechanism,
the query string is input to the server script via the standard input (STDIN), and the content

156 Chapter 10 CGI Programming

length servesasan indication of the number of bytes to read.

You should now be able to understand fully the code snippet for parsing form data in section
10.4.However, asalways, use the CGI module whenever possible.

Soyou may ask, should you use GET or POST?My suggestion is to use POST exclusively
for transmission of forms. That is, if you have an HTML form that requires your visitors
to Il in, use POST Recall that in the CGlI mechanism form data received from GET are
saved in the QUERYSTRING environment variable. It is known that certain shells may pose a
limit to the maximum size of environment variables. Therefore, it is possible that very long
forms are truncated asa result. POSTdoes not have this problem becauseform data, having
received by the Web server is directly piped to the standard input from which CGI applica-
tions canread. GET is also discouraged becauseof security issuesassociatedwith it. Please
read Section10.9for security advice concerning the use of the GET form transmission method.

However, the GET method carries a unique characteristic that makes using it unavoidable
in some situations. In fact, when you click on a hyperlink in an HTML document, you are
actually using the GET method to accessit. Becausethe query string is dir ectly embedded
in the URI, when the URI is accessedby your visitor, the query string is sent to the server
script automatically without the need of creating an HTML form. This property is vital to
CGI applications. Today, some Web sites no longer use static HTML documents to serve
its content, but to generate the pages dynamically using dynamic scripting. Usually, on
these sites there is a single script which is invoked and the page to view is passedto the
script as a query string. The script nds out which page to display by parsing the query
string, and the corresponding page is generated and returned to the client. For example, a
guestbook CGI application may have one script le guestbook.pl , and the various functions
are differentiated just by the query string. To read the guestbook you may go through a URI
like guestbook.pl?page= vie w, while to sign it the URI is guestbook.pl?page= sig n. Therefore,
you may reachdifferent parts of the CGI application simply by varying the query string in
the URI. This function cannot be accomplished with the POSTmethod.

10.6 File Upload

An HTML form is quite powerful in the sensethat it also allows Web-basedupload of les
to the server. If you have used Webmail (Web-basedemail) servicesyou may already have
the experience of af xing attachments when composing an email. This makes use of the le
upload capabilities of HTML forms. CGIl.pm have provided certain facilities for you to write
Perl CGI programs that acceptsuploading of les from HTML forms.

EXAMPLE 10.2 File Upload

HTML Form (upload.html)

<! DOCTYPE HTM. PUBLIC "-//W3C//DTD HTM. 4.01 Transitional //EN
"nttp:// wwv.w3. org/ TR/htm 4/l oose.dtd"">
<htm >
<head>
<title>File Upload</title>

© 0O ~NO UL WNBE

NNNNNRPRPRRRRRRRER R
EWNRPROOOWMNODUNMNWNIEREO

10.6 File Upload 157

NOTES

Note that many Web servers are con gur ed to disable uploading of les. This is es-
pecially the casefor free Web hosting services. This is partly becauseto allow le
upload exposesthe system to certain security risks. Free Web hosting services usu-
ally have alargenumber of users,and without provisions of remuneration providers
of such Web hosting servicesdo not have adequate incentive and staff to carry out
all necessaryregular security audits and bear the potential costsof intr usions should
security attacksoccur. Pleaseread section 10.9for details on the security issuesasso-
ciated with execution of CGI scripts.

<neta http-equiv="Content-Type" content="t ext/htn; charset=i so-8859-1">
</ head>
<body>
<form enctype="mul tipart/f ormdata" method="POST" action="upl oad. pl" >
<p>Pl| ease specify a file to upl oad</ p>
<p><i nput type="file" name="f il enane" size="60"></p>
<input type="submit" val ue="Upl oad">
</fornp
</ body>
</htm >

File upload script (upload.pl)

#/usr/b in/perl -w

use C4d;
use Cd::Carp "fatal sToBrowser";

$cgi obj = new CG;

$fn = $cgi obj - >paran(' fil enanme'); # filename

$fh = $cgi obj - >upl oad('f il enane"); # filehandl e for reading
$rinfo = $cgiobj - >upl oadl nf o($f n);

$byt eCount = 0;

print gqq Content-Type: text/htm\n\n
<! DOCTYPE HTM. PUBLIC "-//W3C//DTD HTM. 4.01 Transitional //EN
"http:// wwwv.w3. org/ TR/ht m 4/ cose.dtd"" >
<htm >
<head>
<title>Upl oad Results</t itle>
<neta http-equiv="Content-Type" content="t ext/htni; charset=i so-8859-1">
<style type="t ext/css">
.Error, .Normal {font-size: 1.5em; font-weight: bold}
.Error {color: #FF0000;}
</style>
</ head>
<body>

158 Chapter 10 CGI Programming

25 ;

26

27 if ('$fh & $cgiobj->cgi _error) {

28 # upl oad error occurred

29 print qq <p class="Error">Error: Upload failed</p> ;

30 } else {

31 $tn = [T *2["\/\\]+) $/;

32 $out name = $1;

33 open QUTFILE, ">data/$out nane";

34 bi nnode QUTFI LE; # On sonme platfornms, ensure binary file {
out put

35

36 while ($bytes = read($fh, $buffer, 1024)) {

37 $byt eCount += S$hyt es;

38 print OUTFILE $buffer;

39 }

40

41 cl ose QUTFI LE;

42

43 print qq \t\ t<p class="Nornal ">Upl oad Successful .</p>\n ;

44 print "W\ t<div>File size: $byteCount bytes</div>\n";

45 print "W\ t<div>File type: $rinfo->{" Content-Type'}</div>\n";

46 '}

47

48 print qq

49 </ body>

50 </htmd> ;

10.7 Important Environment Variables

In this section, a few other important environment variables that are useful and are made
available through the CGI mechanism are outlined below.

10.7.1 CGI Environment Variables

REMOTEADDRIs set to the IP address of the client sending the HTTP request to the server.
This is usually the addressof the client machine itself. However, presenceof intermediate
proxy servers between the client and the server may result in seeingthe addressof the proxy
server instead of the client machine itself. This is becausethe proxy server, on receipt of
the client HTTP request, replacesthe source addresswith its own before sending it to the
server. Proxy servers are set for various purposes, such as caching and imposing security
control. REMOTEHOSTis the fully qualied domain name (hostname and domain name) of
the machine identied by REMOTEADDR As the machine concerned may not have a domain
name, this variable may be NULL. You may also accessit through a CGI object by invoking
the remote _host() method.

© 00O ~NO UL WNPRP

e
N R O

10.8 Server Side Includes 159

10.8 Server Side Includes

One of the major reasonswhy many people consider PHP more convenient than Perl is that
you can embed PHP code inside parsed HTML documents. On serversthat support it, there
exists a feature that is known as Server Side Includes (SSI).SSlrefersto a set of directives
that are placed in an HTML document, and evaluated when the document is parsed by the
Web server. The dir ectives are replaced by the result of evaluation.

The capabilities of Server Side Includes is very limited. Among the several functionalities
supported, the most commonly used feature is to embed the results of a CGI program in an
HTML document. The SSldir ective used is the include dir ective, which looks like this:
<l--#include virtual="counter.pl ">

where counter.pl is the CGI program to be executed. Note that only a le path is supported,

it cannot be a URI. The following shows an HTML page with this SSldir ective and the source
of the program counter.pl

EXAMPLE 10.3 Counter s (Server Side Includes)

HTML TestPage(testpage.shtml)

<htn >
<head>
<title>Test Page</t itle>
</ head>
<body>
<p>This is a test page.</p>
<hr >
<div style="f ont-size: 0.8em; font-style: italic">This page has been {
accessed <!--#include virtual ="counter.pl" --> tines.</i></div>
</ body>
</htm >

Counter script (counter.pl)

#! [usr/b in/ perl

use Fentl ':seek';

print "Content-Type: text/htm\n\n";
ny $path = "datalcounter.dat" ;

Oreate if not yet exist

if (! -f $path) {

open LOG, ">$path";
print LOG "0";

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

160 Chapter 10 CGI Programming

cl ose LOG
}

|If cannot be opened, return a '?" for display

if (lopen(LOG, "+<$path")) {
print "?":
exit O;

1

chonp($num = <LOG>);

truncate LGG, 0;
seek(LOG, 0, SEEK SET);
defined($num or $num = 0;
++$num

print LOG "$nuni;

close LOG

print $num

Note that counter.pl is still executedasa CGI program. Therefore, the program still have to
be given an executablechmod and it should output the content type header. Whenever you
load the page testpage.shtml the counter stored in the data le will beupdated and you will
seeat the bottom of the page the number of views of the current page.

i Test Page - Konqueror -0OX
RE(L) ®ME) wAN) BE(Q) FHRE) TA(T) RE(S) AF(W) HLHA(H)

QAQRSE @0 VIV BALQYQ »

B 45 E () |_|7' http:/flocalhost/~chkihong/perltestpage. shtml ¥) [»

This is a test page.

This page has been accessed 13 times.

Figure10.4: CounterEmbeddeth HTML With SSI

10.9 Security Issues

CGI and Perl together provides a great deal of exibility and easein developing Web-aware
scripting solutions. However, the issue of security is usually overlooked in the script devel-
opment processeither becausethe developers are not aware of security issuesassociatedwith

10.9 Security Issues 161

server-side scripting, or in order to meet completion deadlines all necessarysecurity audits
are unfortunately bypassed. The consequenceis that a large number of functional scripts but
full of security holes are being pushed into the market every day, and these programs are in-
troducing new security backdoors to systemson which they are being deployed. It is easyto
write a program that is functional, yet many security holes are so subtle that they are dif cult
to be discovered and thus avoided. In this section, we attempt to highlight certain varieties of
attacks possible and compile a set of crude but useful guidelines that would hopefully help
you write more secure CGI scripts.

10.9.1 Why Should | Care?

Perl programs are distributed in complete sourcecode, making it very easyfor potential crack-
ers to study your source code, locate vulnerabilities and plan for potential exploits. On the
other hand, natively compiled programs canonly be examined in assemblylanguage and it is
notoriously dif cult to tracetheinstruction ow , not to count locating vulnerabilities precisely
from them which is a practically infeasible task. Attacks on compiled programs are usually
either discovered on an adhocmanner or are attacked by, say, passing avery long sequenceof
charactersto over ow the input buffer (many programs written in C or C++ are vulnerable
to this attack). Attacks on interpr eted languages are generally more well crafted and precise
becausethe source code is available to target at speci ¢ vulnerabilities.

CGil scripts are installed on Web servers and are thus open to visitors anywhere over the
Internet. They are available for attack 24 hours a day, 365 days in a year. For standalone
systemsor systemsin an intranet, attacks are only possible from alimited subsetof users.On
the Internet, attacks may originate from many miles away.

Many CGI scripts are used in business settings or are directly involved in electronic com-
merce, such as shopping cart programs. The ability to maintain a high level of security has
always been paramount in businessapplications. That is becausedata handled by such ap-
plications very likely include highly-con dential personal data of the clients. Suchkinds of
sensitive data include the PIN of clients, their record of transactions and personal information

like addressor social security number etc. Failure to do so not only invites embarrassment
to the nancial institution(s) concerned, such institutions may also be held legally liable for
impr oper handling of personal data. Occasional caseshave beenheard in that the credit card
information of celebrities were being captured by crackers through some illegal means and
subsequently such data were posted to the World Wide Web, putting the subjectsconcerned
in profound embarrassment. People are unlikely to have con dence in a company being un-
able to keep such data from being impr operly manipulated. This directly leads to loss in
revenue.

10.9.2 Some Forms of Attack Explained
HTML Form Tampering

In 2000, Internet Security Systems, Inc. released a security alert on 11 shop-
ping cart applications that were found to be vulnerable to this attack (please visit
http://www .iss.net/issEn/delivery/xfor ce/alertdetail.jsp?id=advise4?2 for the full text). This
vulnerability vividly demonstrates the ignorance of the script developers concernedin secu-
rity issuesof CGI programming.

http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise42

© 00O ~NO UL WN P

el
= o

12
13
14
15

162 Chapter 10 CGI Programming

Shopping cart scripts are setup by merchants on Web serversto track down items users have
selectedto purchase,usually while browsing online product catalogues.When auser browses
the product catalogue and locates an item of interest, he or she clicks on a button or icon
to save the product information, usually the product identi er and other items necessaryto
identify the user such asthe username, to the server database. When he or she has nished
adding all the items intended to purchase, he or she checks out and the shopping cart is
displayed. A shopping cartis an abstraction of the list of items a user intends to purchase,and
is private to the user concerned,in a sensesimilar to atypical shopping experiencein modern
supermarkets (dropping items into a shopping cart and check out at the cashier). Shopping
cart scripts in general implement this by querying the server databasewith the usernameand
extracts all items to purchasespecic to the user. The results are displayed in the form of
an HTML form for the userto conrm the order and optionally enter additional information
required to processthe order, such asdelivery address,contact phone number, payment card
details etc. (but suchkinds of information are generally savedaspart of the userpro le atuser
registration sothat such details no longer needto be speci ed every time he or she purchases)
An HTML form that is vulnerable to this attack may look like the following:

<htn >
<body>
<f orm acti on="checkout .p I net hod="put">

<input type="hidden" name="usernanme" val ue="bernardchan"></input >
<input type="hidden" nanme="t otal " val ue="560"></i nput >

<I-- Alist of items to purchase, onmtted here -->

<p>After you have confirned your order, click on the button bel ow. </ {
p>
<center><i nput type="submt" value="Submt Order"></input></c enter>
</form
</ body>
</htm >

Line 6 and 7 shows two hidden elds in the HTML form. Unlike the visible form controls,
such asthe text messagesand the submit button, hidden elds are not rendered in a browser
window . They are typically used to hold additional data which are not bound to any visible
controls but required by the server script (the shopping cart script) to processthe form input.
Notice the name and value attributes of the hidden elds. The name-value pairs of hidden
elds are also sentto the server script along with that of other visible controls when the form
is submitted. In this example, the shopping cart script adds the two hidden elds dynami-
cally in generating the HTML form to hold the username and total amount so that on submit
the shopping cart software would arrange the total amount indicated to be charged on the
customer's credit card account.

And problem comes. Shopping carts with this vulnerability do not verify the ordering
information on submit and blindly assumesthe value of the hidden elds are exactly as
generated by the script itself. Therefore, a user may give himeself or herself a discount by
replacing the total amount with a smaller one. Why is this possible? As the form is generated
and sentto the user, the browser renders it in the browser window . However, a person with
litttle knowledge will know one can browse the HTML source and even saveit asadisk le.

10.9 Security Issues 163

What he or she needsto do is to use a text editor to modify the value, saveit and load the
modi ed version in the browser. A click on the submit button is all it takesto complete this
attack. Becausethe script does not perform the check on the total, the attack is successful.
This attack may only be discovered one day, possibly in year-end auditing, that the pay-
ment amount and the order do not match, but that would be too late — the subject may
have already closedthe accountand hid up that you could no longer nd him or her anymore.

Why did the script developers commit this error in the rst place? Possibly the culprit is
“convenience”, or “laziness”. It takes quite many stepsto generatethe shopping cart HTML
form, and the script developers could make their lives easierby putting all necessarydetails
to processthe order on the form instead of having the checkout script calculate the total
amount again, becausethe calculated total needsto be displayed on the HTML form anyway.
By meansof “hidden” elds they probably thought no one would bother to read the HTML
source and discover this security hole. Most people probably would not bother to, but it still
leaves a backdoor for abuse. As an e-commerce application | believe having a backdoor like
this is totally unacceptable,however pretty or sophisticated the application canbe.

Conclusion Do not trust anything sent over the network. Always carry out all veri cations
possible at the bestof your knowledge before committing anything.

Privacy Issues

While this is not directly related to Perl CGI programming in general, you should be aware
that the Hypertext Transfer Protocol (HTTP) that is used for accessingthe World Wide Web
conveysall its messagedn plaintext. Therefore,when you submit aform with your password,
addressor credit card number etc. lled in these elds are all transmitted in plaintext through
the Internet. The Internet is a gigantic interconnected network of computers. When you send
a messageto a remote host, for example, to browse a certain Web page on a remote Web
server, the Internet routing systemhasto nd apath betweenyou and the remote Web server.
The scale of the Internet is so large that usually you have to go through many intermediate
hosts on your way to the remote host. Any of these hosts is able to read the content of the
messagespor even to modify it. Under certain circumstances,other malicious hosts may also
be ableto eavesdrop the traf ¢ through thesehosts. Therefore, thereis no con dentiality atall.

If you Web site has to collect privacy-sensitive information from your users by means
of forms, the Web server concerned should be con gur ed to serve these forms using the
Secure Socket Layer (SSL)protocol or Transport Layer Security (TLS), a close variant of
SSL.The Internet usesa layered architecture. SSLacts between HTTP on top and TCP/IP,
the Internet delivery system at the bottom. Therefore, messagesbetween a Web browser
and the Web server are encrypted in transit and thus malicious hosts, even intermediate
hosts on the path are unable to decrypt the messagesexcept the communicating parties.
For example, when your browser sends a form with your personal information which is
to be sent over SSL,the HTTP messageencapsulating the form data are passedto the SSL
layer which encrypts it and then passto the TCP/IP subsystemto send it to the remote Web
server. The Web server on the remote end reversesthesestepsto receivethe messagefrom the
TCP/IP subsystem,decrypts it and then recoverthe original HTTP message.Con guration of
SSL/TLS is performed at the Web server and no modi cation to your CGI programsis needed.

164 Chapter 10 CGI Programming

Earlier in this chapter | mentioned the two form submission methods, namely GET and POST.
In the GET method, the form data encoded asa query string are also carried on the URI. This
poses a number of security issuesif such form data contain privacy-sensitive information.

First, many browsers now cacherecently visited URIs so that users can easily revisit them
without having to manually bookmark them or otherwise savethem. This causespotential
privacy violations on those single-user systems (and thus no password is asked to log on
the system) or miscon gur ed multi-user systems. For instance, consider a typical patronage
to a cybercafé in your neighbourhood. You logged on a PC inside and conducted an online
transaction to buy something from an online store. Suppose the GET method was used
and thus form data including your password in plaintext were carried on the URI, and was
thus cached by the browser. Then you logged off and left the café. Then another person
logged on the PC, and when he or she started the browser, a URI to the online store with

your password embedded appeared in the browsing history. Does this sound scary to you?
System con gurations of most public workstations generally should have this issue xed

already. However, this is not a guarantee. Another situation where this URI may be divulged

is due to a header eld in HTTP that is called “Referer”. When a user agent, e.g. browser,
sends an HTTP request messageto the remote Web server to retrieve a certain resource,
the user agent may include in the header eld “Referer” the referring URI, that is, the URI
of the document from which the URI of this resource was obtained. For example, when
you are viewing a Web page on a certain site like http://www.somesit e.c om/li nks.ht ml
and you click on one of the hyperlinks there to http://www.another sit e. com, for example,
the URI that refers to links.html may be included in the HTTP header which is sent to
anothersite.com . Therefore, if the referrer URI refersto a script URI with privacy-sensitive
information embedded in it they will also be carried along with the next URI access.

You, asa CGl script and Web developer, may do your part to protectyour customers by using
the POSTform transmission method instead of the GET method whenever privacy-sensitive
form data are involved becauseform data are not carried in the URI. That does not eliminate
the need for encrypted tunnels such as SSLto keep out of prying eyesover the network,
however.

eval() and Related Attacks
10.9.3 Safe CGI Scripting Guidelines

Refrain from eval() whenever possible. If you do useit, checkits content. Ensure the content
is exactly in the form expected.

10.10 Questions

A. We have seenhow a shopping cart application with the form tampering vulnerability
could be abusedto give adversaries discounts on items paid for. In the make-up HTML
form example shown, identify another attack that may be performed and devise a
mechanism to defend this attack. Assume on submit that the value receivedthrough the
“total” eld is charged on the user's account whose name is “username” immediately
without performing any veri cations.

Appendix A

Administration

In this appendix, you would learn how to:
? Install aPerl Module from the CPAN

A.l1 CPAN

Perl hasavery active user community . This is evinced by the gigantic list of modules available
on the Comprehensive Perl Archive Network (CPAN). CPAN is the central warehousewhere
you can search for existing Perl modules other Perl programmers have contributed to the
community . You will be surprised that the CPAN contains modules of virtually any category
you can think of. By using existing modules on the CPAN you can enforce code reuse and
cut down both development time and cost by not reinventingthe wheel Even if you are not
writing programsin Perl, for example, when you are a system administrator at a web hosting
company offering Perl-enabled hosting packages,you still need to know how to install Perl
modules your users may need.

A.1.1 Accessing the Module Database on the Web

You can browse the module list at http://www .cpan.org/modules/O1modules.index.html
However, in my opinion the bestway to locate modules is to use the module search engine.
There are several engines available on CPAN, and | generally use http://sear ch.cpan.org
becausethe interface is more neatly, if you know part of the module name already. If you
don't know the name of a module and would like to search through the module description,
then http://kobesear ch.cpan.org would be more useful to you, and it is actually more
powerful. You may download the sourcepackagesand readthe documentation online. If you
intend to install the modules in the traditional way (but manually), you may also download
the source packagesthere.

A.1.2 PackageManagers
Perl Package Manager

As most Windows systems are not equipped with a suitable compiler suite (for example,
Micr osoft Visual C++), and some Perl modules contain portions written in C for performance
impr ovements (seebelow), Perl modules are usually distributed in the form of packages. In

165

http://www.cpan.org/modules/01modules.index.html
http://search.cpan.org
http://kobesearch.cpan.org

166 Chapter A Administration

casea module hasto be compiled before use, it is compiled before being put into the package.
The packagesare constructed by volunteers who have the compiler to compile the modules,
and the packagesgenerated are then contributed to the community. Therefore, from a user's
point of view this is very convenient asall he or she needsto do to install amodule is to fetch
the packageand install it, and it's then ready for use.

Activestate Perl (most likely on the Windows platform) distribution comeswith a package
manager PPM that | found to be quite convenient to work with. Through this package
manager, packagescan be automatically fetched from a remote server and installed. It also
includes tools to keep your modules up to date.

To start PPM, select“Perl PackageManager” from the “ActiveState ActivePerl 5.8” program
group on the Start menu. You would seea prompt ppm>which gives you a command-line
interface to type your maintenance commands. Don't be frightened by a command-line
interface in caseit looks awkwar d to you (this is a GUI age, after all). It is very easyto use
and you can always accesshelp information by typing help alone. To get help information
on module upgrades, type help upgrade etc.

To start with, you would rst try to search for modules in the module repository. Try to
type in search Crypt to seea list of cryptographic modules available. By default, PPM
would searchesfor modules by name only. You can use logical operators and, or and not
in the query string. To match both the module name and description, use the command
search Crypt or ABSTRACT=Crypt . To install a package, note the package name and use

the command install , for example install Crypt-TripleDES . The latest stable version
of the Crypt::TripleDES module is automatically downloaded and installed. To keep
your modules constantly up to date, type upgrade * -install to upgrade any packages

that are out of date to the latest version. You canbrowse alist of packagesinstalled by query *.

This section is meant to give you an overview of the most commonly performed operations
with PPM. Pleaseread the documentation bundled with ActiveState ActivePerl for further
information. However, becausenot all modules are already packaged for PPM, you may not
be able to use this method for some modules.

A.1.3 Installing Modules using CPAN.pm

If your Perl distribution does not come with a package manager like PPM, as is the case
for most Unix variants, there is still an easy way to compile and install modules on the
CPAN without resorting to the traditional, but manual method (to be described next). It
is to use the CPAN.pm module that is bundled with your Perl distribution (should be, but
please checkit for sure). This module gives you a convenient way to automate the regular
extract-con gur e-compile-install steps. It does not give you as many featuresas PPM, but it
is more than adequate if you would just like to install a module in an easyway. However,
a new module called CPANPLUS.pm is going to replace CPAN.pm in futur e Perl releases,
offering a few more features. You may wish to use it instead of CPAN.pm. However, as of
this writing it is not bundled in perl so you have to install it separately. The instructions
below apply to CPANPLUS aswell, but pleasereplace CPAN with CPANPLUS.

You can use CPAN.pm in two ways. If you have tried PPM above, you can also have a
shell-like command line interface where you can type the maintenance commands. Alter -
natively, to quickly install a module you may not wish to go into the CPAN.pm shell and

A.1 CPAN 167

you can simply type it on your system command line. Both methods are covered below.
To start the CPAN.pm shell, type perl -MCPAN-e shell on the command prompt. Note
that very likely you needto bethe systemadministrator (root) in order to start the CPAN shell.

cbki hong: # perl -MCPAN -e shell

cpan shell -- CPAN exploration and nodul es installation (vl.76)
ReadLi ne support enabl ed

cpan> h

Di splay Information

conmand ar gument description

a,b,dm WRD or /REGEXP/ about authors, bundles, distributions, modul es
[WORD or /REGEXP/ about anything of above

r NONE reinstal | recomrendations

I's AUTHCR about files in the author's directory

Downl oad, Test, Make, Install...

get downl oad

make make (inplies get)

t est MODULES, make test (inplies nake)

i nstal l DI STS, BUNDLES make install (inplies test)

cl ean make cl ean

| ook open subshell in these dists' directories
readnme display these dists' README files

Q her

h, ? display this menu I perl-code eval a perl command

o conf [opt] set and query options (quit the cpan shell
reload cpan | oad CPAN. pm again rel oad index |oad newer indices

aut obundl e Snapshot force cnd uncondi tionally do cnd
Toinstall amodule, for example, Crypt::DES , you canusethe command install Crypt::DES

The module would be downloaded from a local package repository, extracted, compiled,

tested and nally installed on your system. Meanwhile you would seea lot of messages
printed on the screen. Errors, if any, will also be printed. Therefore, if the processsuddenly

stops in the middle and there are some errors printed, you should try your bestto locate
the source of the error. Usually, it may be that you have certain prerequisites not met yet.

You should look at the documentation that comeswith a module if problems arise to seeif

they are addressedin there. If you don't want to use the CPAN shell, you can specify the
command on the command line, for example, perl -MCPAN -e install Crypt::DES

Apart from modules, you can install bundles through the CPAN module. A bundle is a
set of related modules that are packaged together. Usually a module requires a set of other
modules, and in this case,the packager may prefer to package all of them as a bundle. An
example of a bundle is Bundle::DBD::mysgl , which includes the modules DBI, DBD::mysql ,
Data::ShowTable and MySQL Eachbundle has abundle le which lists the modules covered.
The autobundle command of your CPAN shell lets you create a bundle le which lists
the modules that are currently installed on your system. For example, if you are a system

168 Chapter A Administration

administrator for a Web host you can maintain a current list of modules on a single system
and have the other systems share the bundle le to ensure that all servers are installed the
sameversions of Perl modules. For more information, pleaseseethe CPAN manpage.

A.1.4 Installing Modules — The Traditional Way

The traditional way is to download the compressed source package from the CPAN as
mentioned above, and extract it. This method should in general only be used if the CPAN.pm
module isn't or cannot be setup properly. The packagesare compressedwith gzip, a popular
compressing tool on the Unix platform. You can extract the package by the command tar
xvzf package.tar.gz . If your version of tar(1) does not support the “z' switch, you
will need to try zcat package.tar.gz | tar xvf -. On Windows you can decompress
gzipped tarballs with software like Winzip or PowerAr chiver. After the packageis extracted,
change to the directory containing the extracted sourceson the command line using the cd
command. Now the Make le needsto be created. Run the Make le generation program
by perl Makefile.PL . The program detectsthe settings of your Perl installation and creates
the site-dependent Make le (that explains why the Make le is not included in the sources).
To execute the Make le, you need a make tool which coordinates the whole compilation
session. On most Unix systemsyou should have a version of make already available. If you
are on Windows, you need to have Visual C++ installed for compilation. nmake is included
in the Visual C++ installation. Becausenmake may not be on your PATH, you may need
to use the Visual Studio command prompt which adds the necessarypaths to the PATH so
that the necessarytools can be invoked without specifying path. On Unix, type make; while
on Windows nmake. The les would then be compiled. Then type make install or nmake
install to copy the necessary les to the correctlocation. Note that modules installed in this
way are not recognized by any package managers.

Although Perl source les are generally portable, some modules have to make use of the XS
mechanismto delegate part of the program in C for performance considerations, or when they
needto interface with the system native libraries in order to function. That's why compilation
is sometimes needed. If compilation is neededyou need to have a working installation of the
C compiler available. For ActiveState Perl the compiler required is cl.exe of Visual C++, and
gccon Unix platforms. If you don't have a compiler, you can still install modules which do
not use the XSmechanism (that is, there are no .xs les in the bundle). On Windows, nmake is
free and you can download from ftp://ftp.micr osoft.com/Softlib/MSLFILES/nmakel5.exe
which is a self-extracted executable.

Web Links

A.1 perimodinstall manpage — Installing CPAN modules
http://mww.perldoc.com/perl5.8.0/pod/[modinstall.html

ftp://ftp.microsoft.com/Softlib/MSLFILES/nmake15.exe
http://www.perldoc.com/perl5.8.0/pod/perlmodinstall.html

Appendix B

Setting Up A Web Server

You have learned how to develop CGI scripts with Perl. It is not very practical to test CGI
scripts with the Perl interpr eter alone, becauseyou cannot easily reproduce an environment
resembling a real Web server. There are several Perl-enabled free web hosting serviceson the
Internet. You may wish to test your scripts there, or on a paid web hosting account that you
own. However, that is still inconvenient having to upload and test every time you would like
to test your scripts. Also, using a third party server for script testing is dangerous. First, if
your script goesastray and locks itself in anin nite loop (this is far more easierto occur than
you think), it would become a never-ending processthat sits there wasting CPU time and
system resources. Every invocation of the script concerned increasesone faulty process. It
doesnot require many clicks before the server would eventually be brought down. Although
you may start to wonder your script has gone into an in nite loop, you cannot do anything
becausethe processesare executed as a system user (on a Unix system, quite likely it's a
pseudo user “nobody”) instead of you and, even if you have shell accessto the Web server,
you don't have the privilege to terminate thesefaulty processesHelplessly, afew hours you
receive a furious letter from the Web host administrator about locking up your account or
so. It's not a story. This was a pathetic experience of mine in my early years of Perl script
development. Also, don't forget freeweb hosts usually don't give you accesso error logs, so
you would get no clue why your scripts do not function as expected. A testing Web server
comesto rescue.In fact, you cansetup an entirely freeWeb serverin lessthan half an hour. In
this appendix, | would give you some instructions that guide you through setting up a basic
Perl-enabled Web server that you can use to test your CGlI scripts of ine. The instructions
weretested on my system,namely Windows 2000Professionaland Debian Linux 3.0(woody).

B.1 Apache

You can download the latest version of Apache Web server from Apache. For your conve-
nience, the link to the latest version as of this writing is provided below:

Apache 2.0.47(Windows binary)
Apache 2.0.47(Unix source)

B.1.1 Microsoft Windows

Note that the installation le usesthe Microsoft Installer for installation. If your Windows
version is ME or 2000,you are ready to executethe installation program. If you use Windows

169

http://httpd.apache.org
http://www.apache.org/dist/httpd/binaries/win32/apache_2.0.47-win32-x86-no_ssl.msi
http://www.apache.org/dist/httpd/httpd-2.0.47.tar.gz

170 Chapter B Setting Up A Web Server

XP, you needto install Windows XP ServicePackl1 rst if you haven't installed it yet. If you
have older versions of Windows, you may need to install MSI Installer. Double click on the
.msi le just downloaded. If that doesn't work, you don't have MSI installer setup yet and
needto install it rst. Pleasesearch the Micr osoft Web site for the download link.

You should belogged in asa user whose privilege allows installation of software, say admin-
istrator. The installation program should start. You should disable any r ewall software on
your system before proceeding with the installation. Also, if you have any other Web servers
running which binds to port 80you should disable them rst. On Windows 2000,go to the
Serviceswindow . Right click over the entry “World Wide Web Publishing Service” and select
“Stop”.

After you have agreed to the terms of the license agreement and press“next”, specify the
network domain, server name and administrator 's email address. If a domain name is
available on your network, enter it into “network domain”. Otherwise, put localhost for
both “network domain” and “server name” like | do. You can change these settings later on
in the Apache con guration le manually, so the settings that | specify in the screenshotis
generally adequate.

iié?—- Apache HTTF Zerver 2.0 - Installation Wizard il

Server Information

Please enter your server's information.

MNetwark Domain (e.g. somenet.com)

IIcu:thDst

Server Mame (e.Q. www.somenet.corm):

IIcu:thDst

Administrator's Email Address (e.g. webmaster@sormenet.com):

Install Apache HTTP Server 2.0 programs and shortouts for:

" for All Users, on Port 80, as a Service -- Recommended,

" only for the Current User, on Port 8020, when startad Manually,

InstallShield

< Back Mext = Caticel

FigureB.1: Apachednstallation Options

Then selectinstallation type. Choose“Typical” here which is generally suf cient, unlessyou
would like to compile modules on your own later on (quite rare on a Windows system).
Then choose the installation folder. The default value is usually acceptable. Installation
then begins. When installation is completed successfully, Apache should have already been
started asa service.

B.1 Apache 171

Test your Web server by accessinghttp://localhost. You should seethe default Apache test
le, asshown (the language of the page may differ, but you should seea similar page with
the Apache logo).

ache FANEIREHEEL - Microsoft Internet Explorer _o|x]
J RO WRO BRD BOBEG TAD WHE [|
| kg -~ -018 4 Qus bpmex Iy @ D92 HE
[HEEE@) | hitp:ilocalhost:8000 | oBE
JCopernic Agentl £ |eThe Weh ;|| ¥ Up | £ History %] Track “7 o | Bl Resulte

-

FIFRIFEI LB RILE » SR IRAY Apache Web Server EREZIEZARTY o (RFILAEIMINAZIE |
{E % » BOTEEREE R -

i

BHERREERHEES ?

EEEECHUEEER AIERREEHEE TR EUCEERIIRE - HEME, 5
B MERENE (8l A A BIGRES o Apache BUREE S - W ERFHEERICHVEN - BL
ENEAE R G, - M H BAREE IR LHYMIRE -

Apache §Y 22 BB EEZERAF o
FRAEJRATEEH Apache FUEEE RS £ » BEHAIEE TEHC B « S Apache !

wered by
= APACH ~|

(e I R B BT e 4

Figure B.2: ApacheDefault IndexFile

Now you canedit the con guration le. Go to the Start Menu >> Apache HTTP Server2.0.47
>> Congur e Apache Server >> Edit the Apache httpd.conf Con guration le. Notepad
appearscontaining the con guration le.

If you would like to run 1IS and Apache concurrently, search for the two lines like

Li sten 80
Server Nane | ocal host : 80

They are at different locations in the le and | just put them here together for convenience.
Changethe two lines to

Li sten 8000
Server Nane | ocal host : 8000

which instructs Apache to bind to port 8000instead of port 80. IIS still gets port 80. If you
don't need (or don't have) IS, you don't need this step.

Now we add in support for CGI. Find the line

#AddHandl er cgi -script .cgi

172 Chapter B Setting Up A Web Server

and changeit to

AddHandl er cgi- script .cgi .pl

That is, remove the # at the front and add “.pl” at the end. This makes Apache recognizethis
le extension asCGl scripts.

Now enable CGI scripts to executein a speci ¢ directory you prefer. On Windows NT-series
(including 2000and XP) operating systemsyou are recommended to put your scripts under
your own “My Documents” folder for easyaccess.Very likely you already have a“My Webs”
folder in it that has already been created for you by your Windows installation that you can
use. Find out a section like

UserDir "M/ Docurent s/My Website"

#<Directory "C:/Docunents and Settings/*/My Documents/M Website">
AllowOverride Filelnfo AuthConfig Limt
Ootions MiltiViews Indexes SynlinkslfOaner Mac h | ncl udesNoExec
<Limt GET PCST OPTI ONS PROPFI ND>
O der all ow, deny
Allow from all
</Limt>
<Li nmit Except GET POST CPTI ONS PRCPFI ND>
O der deny,allow
Deny from al |
</ Li nmi t Except >
#</Directory>

#
#
#
#
#
#
#
#
#
#

Removethe # asshown below and correctthe path (for example the drive label on my system
is F: instead of C:, and the folder containing the scripts and HTML les is changed from the
default “My Website” to “My Webs”). Change the “Options” line as shown below, and add
the Scriptinterpr eterSourcedir ective, which instructs Apache to nd the path to Perl from the
Windows Registry instead of from the shebangline:

UserDir "M/ Docunents/My \Webs"

<Directory "F:./Docunents and Settings/*/ M/ Docunents/My \Webs">
AllowOverride Filelnfo AuthConfig Limt
Options MiltiViews |ndexes SyniinkslfOanerMatch |ncludes ExecC3
<Limt GET POST OPTIONS PROPFI ND>
O der all owd eny
Allow from all
</Linmt>
<Li m t Except GET POST OPTI ONS PRCPFI ND>
O der deny, al | ow
Deny from al |
</ Lim tExcept >
</Directory>

ScriptlnterpreterSource Registry-strict

00 ~NO O WN P

B.1 Apache 173

We would like to use the Registry to resolve the Perl installation path becausemost Perl
scripts (especially third-party scripts) today simply use the Unix-style #!/ust/bin/perl
shebangline and in order to use these scripts you will needto correctall the shebanglines to
the correct Perl path, which is not convenient. If the Perl path is resolved from the Registry,
then the path on the shebangis ignored. This is generally recommended unless you are
not con dent with editing the Registry yourself. If you don't feel comfortable editing the
Registry, then comment out (put a#in front of) the Scriptinterpr eterSourceline above. Then,
you will need to edit the shebang line of all your scripts to re ect the path to your Perl
interpr eter, e.g.

F./Perl/bin/perl.exe

or, if your interpr eter is on the PATH, you can useinstead

#lperl

Now savethe Apache con guration le and restartthe Web server by Start Menu >> Apache
HTTP Server2.0.47>> Control Apache Server>> Restart.

At last, you will needto edit the Windows Registry. This is dangerous if you did it impr operly
asproper functioning of your Windows systemrelies on the integrity of the Registry. Always
stop and think before you commit your action becauseRegistry operations are irr eversible!
To run the Registry Editor, selectStart Menu >> Run and in the box type regedit.exe , and
pressEnter.

Data entries in the Windows Registry are arranged in a tree,rather like a directory structure
of a lesystem. The left pane contains a tree containing a hierarchy of keys. When you click
on akey in the left pane, the right pane contains a list of values associatedwith that key.

In the left pane, under “My Computer” you would nd a number of nodes (keys). In
earlier versions of Windows you would not nd a “My Computer” root node, but that
does not matter. Now expand the “HKEY .CLASSESROOT” node and nd the “.pl” node
below. If Activestate Perl is installed, the key should be there. Then right click on the “.pl”
node and choose “New” >> “Key”. A new key is created under “.pl". Type “Shell” for
the name. Similarly, create “ExecCGI” under “Shell”, and “Command” under “ExecCGl".
Click on “Command”, and in the right pane double click on the text “(Default)” and enter
"F:nPerlinbinnperl.exe” "%1", don't forget to update the path to the Perl executableif this is
not correct, and click OK.

When nished, the Registry Editor should look like Figure B.3 with all the nodes expanded.

You cannow closethe Registry Editor. Createa simple Perl CGI script:

#! [usr/b in/ perl

You shoul d update the shebang |ine above if you don't have
the necessary Registry entry or have not added the |ine

ScriptinterpreterSource Registry-Script to httpd.c onf

print "Content-Type: text/htm\n\n";

10
11
12
13
14

174 Chapter B Setting Up A Web Server

i BRIz =10l x|

TR WEEE) W0 BMSREE SR

----- & i | [== !
Elmg pip i (iﬁ%ﬂﬁ) REG_SZ "FriPerlibin'perl.exe" "% 1"
..... ko

[:l Perl
=+ Shell
=) [ExecCGI

p
Command

LIEZII:I pml _rlﬂ . -

HEIERHKEY_CLASSES ROCT! pl'Shell\ExecCGICommand

Y

Figure B.3: RegistryAfter Modi cation

print "<htm >
<head><title>Test script<i/title></head>
<body>
<hl>Hel | 0 Wrl d</hl >
</ body>
</htm >";

Recall Apache have beencon gur ed to allow execution of Perl CGI scripts in the “My Webs”
folder in your “My Documents” folder. Saveyour le there with a “.pl” extension, for
example on my system it's F:nDocuments and SettingsnAdministrator nMy DocumentsnMy
Webantest.pl.

Now, accesshttp://localhost/ administrator/test.pl. Replace “administrator ” with the
username. If you have adhered to this tutorial, it would be “administrator ”. If you have
changed the Apache port number to 8000 replace “localhost” with “localhost:8000” in the
URL. You should seethe “Hello World” text in the browser window . Congratulations! Your
Web server hasbeensetup!

If you have disabled IIS temporarily and changed the Apache port number to anything other
than 80,you cannow restart IS if you would like to.

B.1.2 Unix

By far the only uniform way to install Apache on nearly all Unix platforms is to install
a source distribution. Binaries for different Unix variants are not interoperable, and are
installed in a different manner. For example, if you are on mainstream Linux distributions

you may be able to nd RPMs (RPM Package Manager) compiled for your distribution.

Debian Linux also hasits own package manager. FreeBSDalso has a port system. Therefore,
you should possibly checkthe documentation on your systemto seeif binaries are available.
However, binaries are usually slightly out of date becauseyou need to wait until packagers
package a software into binaries suitable for your platform. Installation instructions for
binary packagesare not described here.

B.1 Apache 175

You can extract the package by the command tar xvzf httpd-2.0.47.tar. gz. If your
version of tar(1) does not support “z' switch, you will needto try zcat httpd-2.0.47.tar.gz

| tar xvf -. After the packageis extracted, changeto the dir ectory containing the extracted
sources on the command line using the cd command. First, we set up the con guration
options of Apache by the configure shell script. Use this command:

.Ic onfigure --enabl e-mods-shared=all --prefix=/usrl ocal

which installs Apache using the installation pre x /usr/local. All modules are enabled and
compiled as shared libraries, instead of linking them into the main Apache executable. In
this way, we only dynamically load a module when it is needed. The CGI module is one of
the modules that would be compiled. You may specify additional options if you like. Type
Jconfigure --help for alist of con guration options that can be applied. If you don't see
any errors at the end of the messagesthen you should be ne. Now compile and install it.

make
make install

If no error messagesappear which causesthe compilation to stop, then you are lucky.
Now Apache should be installed. Here | outline the changesto be made to the Apache
con guration le. If you adhere to this tutorial the con guration le should be at /usr/lo-
cal/etc/httpd.conf. Becausethis is similar to that of in the previous section I'm not going to
explain the options that have beencovered there. This is the original con guration:

User nobody
Goup #1

Server Adni n you@our . addr ess
#Server Name new. host . nane: 80

#<Directory /home/*/public_htm >
AllowOverride Filelnfo AuthConfig Limt |ndexes
Options MiltiViews |ndexes SymlinkslfOaner Mac h I ncl udesNoExec
<Limt GET POST OPTI ONS PRCPFI ND>
O der al | ow, deny
Allow from all
</Limt>
<Li m t Except GET POST COPTI ONS PROPFI ND>
Order deny,allow
Deny from all
</ Li nmi t Except >
#</Directory>

#
#
#
#
#
#
#
#
#
#

#AddHandl er cgi-script .cgi

My modi cations are as follows (please read the description below before making your
changes):

User wwaww
G oup Wwww

176 Chapter B Setting Up A Web Server

Server Adm n abc@lef .c om
Server Nane 127.0.0. 1: 80

<Directory /home/*/p ublic_htn >
AllowOverride Filelnfo AuthConfig Limt |ndexes
Options MiltiViews |ndexes SyniinkslfOanerMatch Includes ExecC3
<Limt GET POST CPTIONS PROPFI ND>
O der all owd eny
Al'low from al |
</Limt>
<Li m t Except GET POST OPTI ONS PROPFI ND>
O der deny, al | ow
Deny from al |
</ Li ni t Except >
</Directory>

AddHandl er cgi- script .cgi .pl

On Unix, although Apache hasto be executed asroot in order to bind to port 80 (as a side
note: you can also install Apache in a user account by modifying the installation pre x
--prefix during con guration to somewhere inside your home directory but you need to
set the port number to be larger than 1024 becauseport numbers below 1024 are so called
privileged ports that by Unix convention can only be bound to by the root user), in most
installations once Apache hasstarted up it would drop its root privilege through the chroot()
system call and run as a pseudo user like “www” or “nobody” that has limited privileges
to do much harm to the system should intr usions occur. This is a measure to minimize the
security risks involved. An appropriate user and group may have been created for you by
your operating system installation already. If not, you will need to create them. Seethe
adduser(8) and addgroup(8) manpagesfor more information. On my system, a “www” user
and group hasbeencreatedand | just useit here.

You should specify the email addressof the administrator. In Windows this information is
already setup by the installation program, but on Unix you will needto setit here. Similarly
is the casefor ServerName.

With this con guration, you should be able to execute CGI scripts inside the “public _html”
directory. Now start the Apache Web server by

[usr/local /bin/apachect| start

Appendix C

A Unix Primer

In this appendix, you would learn:

? basicconceptsof the Unix operating system

? somebasiccommands in Unix

C.1 Introduction

C.1.1 Why Should | Care About Unix?

You may wonder why | took the time to dedicate an appendix to the Unix operating system
in a Perl tutorial. “Perl is platform-independent”, you said, “and my Perl programs run ne
on my Windows XP!" Indeed, Perl programs are largely platform independent (platform-
dependent Perl programming is possible, but in most casesyou don't need to, so | am not
going into details), and you can develop and test Perl programs entirely on your platform.
However, a couple of Web server surveys consistently con rm that more than 60%of the Web
servers on the Internet run on various avours of Unix, outweighing Microsoft Windows
with the remaining share of about 30%. Very likely, your Web host is also running on Unix.
Therefore, it is bene cial to you if you canget yourself acquainted with this operating system.

Also, Perl has a strong Unix cultur e and tradition. It was intended to be a exible scripting
language like shell scripting, awk and sed etc. on Unix platforms. For example, regular
expressionshave long been extensively used in various utilities on the Unix platform. Quite
a number of Perl's builtin functions (as seenon the perlfunc manpage) are interfaces to the
corresponding Unix commands or closely resemble functions in the standard C libraries
on Unix (not to mention the fact that Dennis Ritchie, the inventor of the C programming
language, was also one of the inventors of the core Unix operating system!).

C.1.2 What Is Unix?

Unlike Microsoft Windows, which is solely owned and developed by the Micr osoft Corpora-
tion, the term “Unix” doesnot referto any speci ¢ operating systemreleases.lt is a collective
name embracing a family of operating systems sharing certain common characteristics.! It
was initially developed by Dennis Ritchie and Ken Thompson from the Bell Labs in 1960s.

1The Open Group has issued The Open Group BaseSpeci cations Issue 6, IEEE Std 1003.1,2003Edition that
de nes astandard operating system interface, which can be regarded asthe basisof Unix operating systems.

177

http://www.opengroup.org/onlinepubs/007904975/

178 Chapter C A Unix Primer

Over more than 30 years of evolution, many variants of the Unix operating systems have
emerged. Today, the most prominent hamesin Unix include Linux, *BSD (FreeBSD/OpenBS-
D/NetBSD), Solarisand Mac OS X (Jaguar)asa newcomer.

This appendix is intended to be an intr oduction to the Unix computing environment. There-
fore, emphasis is placed on shell commands that are frequently used by users. In particular,
X-Windows, the graphical user interface on Unix, will not be introduced in this chapter.
Also, for the sake of generality features or commands that are specic to any particular
Unix variant will not be included. The commands and concepts described in this chapter
can be applied on many Unix operating systems. Readersare advised to consult other Unix
literatur e for more in-depth treatment of the topics covered.

C.1.3 The Overall Structure

A system running Unix can generally be envisioned as having a layered architecture.
What does this mean? First, the bottom layer is the system hardware. This ranges from
the central processing unit (CPU), memory system, storage devices, graphics adapter to
peripheral devices such as keyboard and printers. They are interconnected through buses,
that are inter-component wir es that carry data and control information in between. The
operating system lies on top of the hardwar e layer to coordinate the hardwar e components.
This part of the operating system which interacts with the hardware directly is the core
of the operating system, called the kernel. On top of the kernel are the user programs.
These programs do not need to interact with the hardwar e dir ectly anymore. Instead, they
only need to interface with the kernel in casethose services are needed, by invoking the
necessarysystem calls, which are functions provided by the kernel. Filesystem operations,
for example, are examples of standard system calls on Unix. The kernel would in turn
perform the appropriate actions to instruct the devices to commit the operation. When
you are using a user program, you are presumably the top among the layers, on top of
the user program. The user program provides you with the user interface with which you
interact. Commands de ned by the user program, and in caseof graphical user interfaces,
mouse clicks and their corresponding pixel coordinates are translated into instructions for
the lower layers. This layered architecture allows a high degree of abstraction between
layers. If the interface (or the Application Programming Interface) of a layer changes,
only the layer immediately on top needsto be modied. Becauseof abstraction, the user
needs not understand the low-level details of the hardwar e circuitry, for example, in order
to operate a computer system. This is an important principle in all modern computer systems.

To sum up, the Unix operating system servesto act as an intermediary between a computer
user and the computer hardwar e so that activities that occur at different components of a
computer system are well coordinated.

Unlike many other operating systems, Unix is a multi-user operating system from the very
beginning, allowing multiple usersto work on the system concurrently.

C.2 Filesystems and Processes 179

C.2 Filesystems and Processes

C.2.1 Overview

In modern days, large-capacity secondary storage is important. Floppy disks, hard disks
and CD-ROM etc. are classi ed assecondary storage devices, in contrast to primary storage,
which is just an alias of the main memory. Secondarystorage media is considered permanent,
becausedata that are written onto the media are retained when the power is off. When an
executable le hasto be executed, the operating system arranges for the executable le to
be copied from secondary storage to primary storage (i.e. your RAM). The program is then
broken down into instructions and executed from internal caches. A program in execution
is called a process. The reasonthat the executable le is not executed from the secondary
storage directly is that accessesf secondary storage devices are very slow compared with
the main memory becausesuch accessesnvolve mechanical movement of disk arms, for
example, and the speedof which is subjectto mechanical limitations.

A disk is simply alarge array of disk blocks of xed sizein which data can be stored. It does
not mandate any rules to organize data that are being stored on the disk. In order to better
organize storage of data, a large-capacity storage media is usually divided into multiple

partitions . This is very common in systemswith multiple operating systemsinstalled, with
each operating system installed in its own partition. However, partitioning simply marks
the beginning and the end of each partition, but does not answer the need for organizing
data that are written in each partition. Therefore, the second step is to create a lesystem

on each partition. By creating a lesystem, the data structuresthat are necessaryto index
data to allow efcient accessare written to the partition. This operation is more well-known

as “formatting” to users of MS-DOS and Windows operating systems. Modern Windows
systems use either one of the two lesystems, namely File Allocation Table (FAT) or New
Technology File System (NTFS). On Unix, various choices of lesystems are available
depending on the operating system variant. Among the Unix variants, Linux supports the
largest number of lesystems. The standard lesystem on Linux is the Second Extended
Filesystem (ext2). Other lesystems in widespread use include reiserfs and ext3, which are
both equipped with journalling capabilities. Other Unix variants mostly use the Unix File
System (UFS).

The lesystem determines the dir ectory structure, for example, how les are representedand
layout on the disk. To better organize the les, we intr oduce a hierarchical dir ectory structure.
Logically, les are classi ed and put into different dir ectories. Files of a similar kind are put
into the same directory. Also, directories can be nested, so that a directory can be created
inside a directory. This allows ne-grained organization of les in a well-str uctured manner
for easyaccess.Becausedir ectories are hierarchical, they are customarily representedin the
form of atree.In Computer Sciencearena, atreerefersto a hierarchical data structure which
best shows the subordinate relationships of directories. This is a very intuitive concept that
readerswith some experiencewith operating systemsshould be familiar with.

The root of the directory structure in Unix is represented by /. The directory root is the
only directory which does not have any parents. All les on the system must rest under the
directory root. As you can seein the gur e above, a number of directories appear under
the root. Each of these dir ectories serve its speci ¢ purposes. In Table C.11 list a few more
important onesthat are presenton nearly all Unix systems?.

2pleaseconsult the Filesystem Hierar chy Standard, the recommended schemefor compatibility between dif-
ferent Unix variants.

http://www.pathname.com/fhs/

180 Chapter C A Unix Primer

Figure C.1: Dir ectoryStructureIn TreeRepesentation

Directory Purpose

/hin Essentialuser programs, e.g. shells, le tools

/boot Core system les for system bootup

Idev Device les (remember devices are representedas les?)

letc System-wide con guration les for systemand user programs
/home User accounts: les private to individual users

Imnt Mount point for foreign lesystems

Iroot User account of system administrator (root)

Isbin Systemadministration commands used only by root

tmp Temporary les

lusr User programs that are installed system-wide, and related les
Ivar Data les written by system programs, e.g. email and various logs

TableC.1: Major Unix StandardDir ectoriesand Their Purposes

In Unix terminology, a le is not necessarily a regular le. Directories, symbolic links and
even devices are also representedin the sameway asaregular le, differentiated simply by a
le type indicator in the inode (seebelow). Customarily, regular les are representedby a hy-
phen “-", directoriesby “d” and symbolic links by “I". A few other le types are de ned, yet
they are specialized le types that are seldom used dir ectly, sol am not going into details here.

C.2.2 Symbolic Links and Hard Links

The concept of links is foreign to users of many other operating systems, e.g. MS-DOS or
Windows. Unix supports two types of links, namely symbolic links and hard links . Symbolic

C.2 Filesystems and Processes 181

links and hard links in Unix are similar in senseto symbolic referencesand referencesin Perl,
respectively. In many situations, symbolic links and hard links have similar effects. However,
under the hood they are implemented in very different ways which give rise to different
behaviours in certain situations. Becausethe concept of hard links is not very clearly ex-
plained in many Unix literatur e, | decided to elaboratealittle bit on this conceptin this section.

Symbolic links are easierto understand. It works like “shortcuts” (the .Ink) les on Windows.
Basically, a symbolic link is a special type of le that storesan alternative accesspath. When
the symbolic link is accessedthe stored path is used for access.Symbolic links are frequently
used to create shortcuts to very long paths, such that a shorter path is used instead. For
software distribution sites, they are also used to maintain a static URL to the latest release.
For example, on a certain system there are dir ectoriesand les asfollows:

pub/
download/
myprog_current.zi p -> [ust/share/devel/ myprog /cu rr ent .zi p
usr/
share/
devel/
myprog/
current.zip -> myprog_3.0.zip

myprog_1.0.zip
myprog_2.0.zip
myprog_2.2.zip
myprog_3.0.zip

The“->" indicates a symbolic link. On the left is the name of the symbolic link (the alias), and
on the right is the alternative path to follow . Saymyprog is a softwar e developed. In this exam-
ple, to accessthe current version of myprog, the path is /pub/download/mypro g _current.zip
When the le is accessedthrough this symbolic link, the system would then try to ac-
cessit at /usr/share/devel/m yprog /cu rre nt.zi p, which in turn is also a symbolic link
to myprog _3.0.zip , the archive of the latest release. Therefore, essentially, the path
fusr/share/devel/m ypr og/mypro g_3.0.zip is used to accessthe le. This example serves
both purposes. It shortens the URL, and users can always get the latest releasewith the same
URL, provided the symbolic links are properly maintained to point to the latest release.You
may also wonder why | create two symbolic links instead of having myprog _current.zip
pointing to myprog _3.0.zip directly. This is for conveniencein management, sothat no matter
the user is in /pub/download or /usr/share/devel/m ypr og he or shecanstill easily locate the
latest version, and notice that by doing so the symbolic link in /pub/download needs not be
updated when a new releaseis placed in /usr/share/devel/m ypr og, only current.zip needs
to be.

To createa symbolic link, usethe In command, with the -s switch. For example,

cbki hong@bkih ong: /t est$ cd pub/ downl oad
cbki hong@bkih ong: /p ub/ downl oad$ I n -s /usr/ share/devel / nyprog/current.zip {
nyprog_current. zip

Hard links are more dif cult to understand. Recall that in the previous section | described

182 Chapter C A Unix Primer

what a lesystem is. By creating a lesystem, indexing facilities that allow the operating
systemto quickly locate which disk blocks a certain le occupiesare created on the disk. This
servesasimilar purpose asthe map in atraveller's pocket. When a le is createdon the disk,
an inode (index node) is created for the le which contains attributes such asthe owner and
group (seenext section) identi ers, the times of modi cation and access,the le type and
locations of disk blocks containing the le content (pointers). Finally, the operating system
needsto add to the inode of the containing directory the pointer to the newly created inode
sothat the le is added to the directory entry. This pointer is actually a hard link. Hard links
work at the level of inodes to allow direct accessof the le being pointed to. Therefore, for
every inode thereis at least one hard link that points to it, from the containing directory le
entry. If we createan additional hard link to a le, that meansanew pointer to the le inode
is added. Here is a sequenceof commands which servesasan example:

cbki hong@bkih ong: /t est$ touch filel.txt

cbki hong@bkih ong: /t est$ In filel.txt file2. txt
cbki hong@bkih ong: /t est$ touch file3.txt

cbki hong@bkih ong: /t est$ Is -1i

342533 -rw-r- -r -- 2 cbki hong cbki hong 0 2003-07-30 17:56 filel.txt
342533 -rw-r- -r -- 2 chki hong cbki hong 0 2003-07-30 17:56 file2.txt
342531 -rw-r- -r -- 1 cbki hong cbki hong 0 2003-07-30 17:59 file3.txt

cbki hong@bkih ong: /t est$ echo "ABCD" > filel. txt
cbki hong@bkih ong: /t est$ I's -1i

342533 -rw-r- -r -- 2 chki hong cbki hong 5 2003-07-30 18:01 filel.txt
342533 -rw-r- -r -- 2 cbki hong cbki hong 5 2003-07-30 18:01 file2.txt
342531 -rw-r- -r -- 1 cbki hong cbki hong 0 2003-07-30 17:59 file3.txt

The touch command createsan empty le. Theln command without any switches createsa
hard link. Here, file2.txt is created as an additional hard link to the inode of filel.txt
Thels command displays alisting of les. Here,two switches-l and-i aregiven. If multiple
switches are provided on the command line, you can combine them into -li (ordering does
not matter). The-l option causesthe long listing to bedisplayed, with the permission values,
owner, group, date of the last modi cation and the le size. If the-i switch is given, the inode
number that the le entry points to is inserted asthe rst column. We can seethat filel.txt
and file2.txt points to the same inode, while file3.txt points to a different inode. The
third column is the number of hard links pointing to the inode. This number is stored at
eachinode. Forregular les, this number is usually one, as explained previously. However,
becausewe have manually created a new hard link asfile2.txt , the number displayed is 2.
Also notice that the two entries are exactly identical, exceptthe name. Here, the text “ABCD”
(with line terminating character)is written into filel.txt , and both entries are updated.

You may wonder why the lesystem hasto keep track of the number of hard links pointing to
an inode. If you have read the chapter on referencesin Perl you will nd acloseresemblance
with the Perl garbage collection mechanism. That is, the inode would not be freed (deleted)
until the number of hard links to it dropsto 0. Consider the example again. If at this point we
delete filel.txt , the number drops to 1, but becausewe still have a hard link that points to
it from the entry file2.txt , the inode is not freed. It is not until when file2.txt is deleted,
that the inode and other disk blocks that are associatedwith this le will eventually be freed.

cbki hong@bkih ong: /t est$ rmfilel.txt
cbki hong@bkih ong: /t est$ Is -1i

C.2 Filesystems and Processes 183

342533 -rw-r- -r -- 1 cbki hong cbki hong 5 2003-07-30 18:01 file2.txt
342531 -rw-r- -r -- 1 cbki hong cbki hong 0 2003-07-30 17:59 file3.txt
cbki hong@bkih ong: /t est$ rmfile2.txt

cbki hong@bkih ong: /t est$ Is -1i

342531 -rw-r- -r -- 1 cbki hong cbki hong 0 2003-07-30 17:59 file3.txt

Occasionally you will nd some les (and dir ectories)with the “.” name pre x, e.g."“.kde3/"
and “.vimr ¢”. These les (the “dot” les) are usually found in private user accountsin the
/home tree,but in most casesyou won't seethem at all becausethe “dot” les are hidden by
default. These les are usually created by user applications to store user-speci ¢ con gura-
tion and data les, becausethe user account is usually the only directory that applications
written by users can write to that is private to the user. The /etc treeis owned by root and
only system-wide con guration canbe made there by the system administrator, and the /tmp
treeare for temporary les only and needto be periodically cleanedup to avoid accumulation
of useless les, thus data les that are to be kept cannot be placed into thesedir ectories. Due
to the large number of applications installed in the system, very likely large numbers of these
data les have to be created in the user account. To avoid clutter and prevent the user from
accidentally deleting these les, Unix hides these les by default, unless you pass the -a
option to the Is command.

Areyou wondering why | suddenly jump from my hard links discussion to “dot” les? That
is becausel am going to introduce to you two special “dot” les that are presentin every
directory, namely “.” and “..”. MS-DOS also has the notion of thesetwo special les. They
are automatically created in a directory when the directory is created. They are in fact hard
links to the current directory le, and the parent directory le respectively. Therefore, they
appear as dir ectorieswith thels -la command. “..” is used to refer to the parent dir ectory
in the directory tree. For example, with the cd command, you can specify the name of a
subdirectory to go into it, but when you need to return to the parent dir ectory, you can use

the command

cd ..

As another example, cat ../../README.xt outputs the le README.txt two levels upwar d.
For example, if you are in the directory /home/cbkihong/docs /pe rl tut when you type the
above command, then the Unix shell will try to nd the le at/home/cbkihong/RE ADME.t xt
and display its content. The “.” directory points to the current dir ectory. It seemsto be not
useful at all. However, | can nd at least one use of it. For security reasons,many Unix
installations would not put the current dir ectory, that is “.” into the environment variable
PATH especially for the root user. Therefore, if you have an executable le, say myprog, in
your current directory by just typing myprog the program will not be started at all, because
PATHis the executable search path that is used if the path to the executableis not speci ed.
Directories not listed in this variable will not be searched for executables. In this case,you

need to qualify it with the directory whereit canbe found, by

Imyprog

If the target le is not an executable,the “./" pre x is generally optional and well understood
if absent. Therefore, cat docs/README is generally understood to be cat ./docssREADME .
Becauseof thesetwo special “dot” les, you will nd that the number of hard links pointing

184 Chapter C A Unix Primer

to dir ectoriesis never one. As a bare minimum there aretwo, onedue to “.” and the other one
from the parent directory le inode. If there are subdirectories,then “..” in the subdirectories
will add to the number of hard links pointing to the current dir ectory inode. If there are extra
hard links created manually to the current dir ectory, then there are even more. For example,

bin/

etc/

home/
cbkihong/

The /home directory inode has 3 hard links pointing to it. However, there are 5 for /, that

is becausethere is no parent directory for /, and for consistency the “..” in / also points
to itself. Togetherwith “.” and*“..” from the 3 subdirectories,the hard link count is therefore5.

Symbolic links are more widely used becausesymbolic links only storesan alternative path
name and canbe used provided the alternative path is accessiblefrom the dir ectory tree. That
is, symbolic links may point to a destination that is on a different lesystem. For example,
a symbolic link on my Linux reiserfs partition may point to a le on the Windows FAT
partition, which does not even have the notion of hard links (did I tell you that you cannot
create a hard link on a mounted Windows partition at all?). On the other hand, hard links
cannot cross lesystems, and they are only supported on Unix-compatible lesystems, so
their areasof application are rather limited.

C.2.3 Permission and Ownership

Because Unix is from the ground up a multi-user operating system, a permission and
ownership system has to be in place to control who have accessto resourcesand how they
canaccesghem. In Unix lesystems, every le hasan owner, the user who createdthe le on
the lesystem. Apart from the owner, each le is associatedwith a group. Thels command
with the -I switch causesthe directory listing to be printed in the long format, with the name
of the owner and group printed in the third and fourth column, respectively:

cbki hong@bkih ong: /d ocs/perltut$ Is -I

dr wWxr - Xr -X 2 cbki hong users 477 2003-06-20 14:25 images

STW -f - -- 1 cbkihong users 657800 2003- 06-20 14:28 perltut. pdf
STW -f --f -- 1 cbkihong users 4012769 2003-06-20 14:28 perltut.ps
STW I - -- 1 cbki hong users 3887 2003-06-19 19:17 perltut.tex

In this example, the les have the owner “cbkihong” and belong to the group “users”. To
control how different users can accessthe les, three sets of permission bits are assigned
to each le which specify permissions that are given to the owner, group members and
everybody else. The permission values are re ected by the rst column of the le listing
obtained by the Is command above. The rst character indicate the type of the le. The
remaining nine charactersrepresentthe permission values. Here is a summary of what each
character meanswith respectto a dir ectory and aregular le:

Let's take the rst two entries in the example listing above asan example. For the “images”
dir ectory, we divide the permission values into threesets:

C.2 Filesystems and Processes 185

Regular File
Bit Value Meaning
r 4 Read le content
w 2 Modify the le content
X 1 Executethe le
Directory
Bit Value Meaning
r 4 Readdir ectory listing
w 2 Create/delete les in the dir ectory
X 1 Enter the dir ectory

TableC.2: FilesystenPermissiornvalues

fle type owner group everybody else
d WX r-X r-X

Everybody on the system can read the directory listing and enter the directory. However,
only the owner “cbkihong” canadd new les or remove les from the directory. To read the
directory listing meansyou get a list of namesthat representthe les (including subdirecto-
ries and symbolic links etc.) in the directory. For example, if you enable the “x” bit but not
the “r” bit, the command Is images/ will fail becausethis operation involves getting the
directory listing. However, the command cat images/README.txt will be successfulif the
le README.txt existsin the “images” dir ectory becausedir ectory listing is not involved in

the operation. On the other hand, if the “r” bit is enabled but not the “x” bit, you can see
the list of les in the directory, but you cannot accesshem. Changing into the dir ectory with

the command cd will also fail. Becausesuch a combination of permission bits is somewhat
nonsensein practical use, for directories usually the “r” and “x” bits go together — either
you enable or disable both of them, but not enabling one and not the other.

Unix groups are not frequently used in practice, but they can be good for sharing of les
among users on the system in a simple way. For example, a le server in a company may
have a “managers” group whose members consist of managers from all departments. The
server may have a dir ectory called “r eports” containing reports prepared by the managerial
for all staff. If the directory is not in the /home tree,it is very likely owned by the system
administrator (root). However, the administrator may setthe group to “managers” and set
the group “w” bit to allow the managersto put their reports into the dir ectory, while other
staff usersonly have read accessA possible con guration is shown below:

dr Wxr Wxr -x 2 root managers 477 2003-07-20 14:38 reports

For the “perltut.pdf " le in the sample le listing above,the permission values are asfollows:

fle type owner group everybody else
- rw- r-- r--

That meanseverybody canreadthe le, but only the owner can modify it. Somepeople have
misconceptions on Unix permissions that one needs dir ectory write permission to modify a
le in the directory. The factis only the le write permission is needed. Also, some may think

186 Chapter C A Unix Primer

to delete a le one needswritable permission to that le. Only the dir ectory write permission
is needed in this case. If you understand my description above fully, you are not going to
make thesekinds of mistakes.

Note that internally (for example, in the inodes) owners and groups are represented by
numbers instead of names such as “cbkihong” and “users”. That is because storage of
integers uses less space compared with names. On most systems, the /etc/passwd stores
the mapping between user ID and username, while /etc/group storesthe mapping between
group ID and group name. They are used to resolve the mnemonic names for display as
output of commands suchasps and Is etc.

In Table C.2 you seea column with the heading “Value”. Internally, to store the permission
values in amore compact form the permissions are encodedinto anumber. Take the “images”
dir ectory as an example. The permission value “drwxr -xr-x” may be converted to numeric
representation asfollows:

Owner (rwx): 4+ 2+ 1=7
Group (r-x): 4+ 1=5
Everybody else(r-x): 4+ 1=5

The character “d” is only an indication that this is a dir ectory, so it's not a permission value.
Therefore, the numeric representation is 755, by concatenating the permission values for the
owner, group and everybody else. Pleasenote that the permission values of symbolic links
are not used in practice, and are setto 777 (Irwxrwxrwx) by default.

C.2.4 Processes

Once executable permission is applied to a le, it can then be executed by the system. A
program in execution is called a process. Each processhas an owner and is associated
with a group, similar to the caseof les on a lesystem. Each processis associated with

four identi ers. Apart from the user ID and group ID, a processalso has an effective user
ID and an effective group ID. In general, when an executable le is being executed, the
user ID is that of the user who executed the program, and the group ID is that assignedto
the user when the user account was created. In general, the effective user ID is the same
as user ID, and the effective group ID is the same as group ID. They are different only
if the le being executed has either the setuid or setgid bit set, which are two additional

permission bits that are useful only to executable les and will be described in the next sec-
tion. They are seldom needed, and their useare usually not justi ed unlesswith good reasons.

The enforcement of an ownership system on processesprevents unauthorized users from
modifying the state of the processesfor example, to terminate them. In general, only root or
the userswhose user ID matchesthe user ID or effective user ID of a processare allowed to
change the state of a process. You can change the state of a processhy sending it a signal,
that is, a messagesent from the operating system kernel to a process. From a user's point
of view, a processcan be in one of several states: running, suspended or terminated. We
can usethe kil command to send a signal to a process. The signals that are most frequently
used include SIGHUP (1), SIGINT (2), SIGKILL (9), SIGSTOP (19) and SIGCONT(18). The way
SIGHUPis handled is process-speci c. It is generally widely supported that when a daemon
processreceivesthis signal, it rereadsits con guration les. This is convenient for system
administrators to effectuate changes made to the con guration les without restarting the

C.2 Filesystems and Processes 187

daemon process. The SIGINT signal is what is sent to a processwhen the user presses
Ctrl-C. In most cases,the processis terminated. However, some processesare de ned

to catch the signal and thus prevent it from being terminated. For example, Ctrl-C is a
combination key de ned in emacs,soit hasto catch the signal. In this case,you may try to
send the SIGTERM(15) signal. Runaway processescan generally be abruptly terminated by
the SIGKILL signal. The SIGSTOP signal causesthe processto be suspended. Both SIGKILL

and SIGSTOP cannot be caught by any processes,and therefore provided you have the
permission to change the state of the processthese two signals should succeed,at least in
theory. However, there are a few occasionswhen the process,or even other parts of the
operating system are ignoring these signals. This is a sign of inauspiciousness and you are
advised to restart your system if this happens to you (but probably by then it is already too
late). For a suspended process,you can put it back to running state by sending it a SIGCONT
signal. You cansendasignal using kill in severalforms, asshown in the following examples:

kil -SIGHUP 826
kil -HUP 826
kil -1 826

You can use the name of the signal or the signal ID to specify the signal to send to the
process. Becauseall Unix signal names actually start with the prex “SIG”, you may
omit this pre x to reduce the amount of typing. The last argument to kil is the process
ID. Each processhas an ID to uniquely identify a process. You should check the process
ID by using the ps command, which is displayed on the far left. Most systems also have
akillall command which freesyou from the need of looking up the processID. For example,

killall -SIGINT myprog

which tries to terminate all instances of the program myprog. However, kil is a more
reliable choice on some Unix variants, or wherekillall is not available.

A side note about the executableand read permission of executable les. | have recently seen
a question raised on a Unix forum about making a shell script executable but not readable
by other users on the system. The answer is that is not possible to use the permission 711
(rwx—x—x). There are two main types of executable programs. Either they are compiled
into an executable object code (binary) format that can be executed directly (e.g., compiled
programs written in C), or shell scripts (e.g. perl or sh scripts). If the executableis in an object
format supported by the operating system kernel, it can be dir ectly loaded and executed by
the kernel. Today two main binary formats are supported on Unix, namely a.out and ELF
(Executableand Linkable Format). a.out is well supported, but is quickly replacedby ELF on
many Unix platforms. In the caseof executable scripts, on the other hand, the kernel needs
to load the interpr eter instead, and the interpr eter executesthe script instead. To executethe
script, the interpr eter needsto have read accessof the script. That's why you can't use 711
asthe script permission if everybody needsto executeit. This works for compiled programs,
though.

C.2.5 The Special Permission Bits

Apart from the 9 permission bits that canbe setfor every le, there aretwo special option bits
that pertain to executable

188 Chapter C A Unix Primer

Appendix D

BNF Grammar of Selected Functions

Here, | will presentthe full grammar of selected functions using the Backus-Naur Form
(BNF), awidely-used and systematic method of representing syntax (grammar) of computer
languages.

D.1 sprintf() /printf()

<pl acehol der> ::= %<nore_attr> <conv_type>

<conv_type> ::=%| c| s|] d| u] o] x| X|]e|]E|]f]g| G| b|]pl|ln]|e

<nore_attr> ::= <param.idx> <flags> <vector> <m n_wi dth> <max_wi dth> <sjze> <
format _idx>

<paramidx> ::= <nun®> | e

<flags> ::= <flag_base> <flag_signprefix > <flag_ paddi ng>

<flag_base> ::=#| e

<flag_signprefix >::=[.| +] | e

<flag_padding>::=[0| -]| e

<min width> ::= <num> | <arg> | e

<max_width> ::= . [<num>| *] | e

arg> ::=* [<nun> $ | e]

<size>::=I1 | h|] qg| L] Il | e

189

190 Chapter D BNF Grammar of Selected Functions

Appendix E

In The Next Edition

The following topics or modi cations are planned to be included in the next edition of this
Perl 5 Tutorial. If you have any other suggestions on other topics of interest or amendments
to the content of this edition, pleasefeel freeto use my feedbackforum or my email feedback
form to let me know. The links can be found on page 2.

S B B I S L S S S R I e S R L BN

more full code examplesand illustrative gur es

wantarray() ~ for subroutines

threading and fork() ing new processes

mod _perl

Databaseaccesswith DBl and DBD::*

intr oduction to XS

internationalization support in Perl and PerllO layers

debugging facilities available in Perl

GUI building with Tk

Formats (unlikely , becauseit's really archaic)

discussion of the internal structure of hashes

more examples on complex data structuresand algorithms implementations
socketprogramming and existing CPAN classes(e.g. LWP

“heredoc” quotation syntax (I'm not fond of it but some people do useit)
Regular expressions(Perl extensions)

Exporter module in object-oriented programming

more object-oriented design principles and examples

coverageof File:* classes

191

	Introduction to Programming
	What is Perl?
	A Trivial Introduction to Computer Programming
	Scripts vs. Programs
	An Overview of the Software Development Process

	Getting Started
	What can Perl do?
	Comparison with Other Programming Languages
	C/C++
	PHP
	Java/JSP
	ASP

	What do I need to learn Perl?
	Make Good Use of Online Resources
	The Traditional ``Hello World'' Program
	How A Perl Program Is Executed
	Literals
	Numbers
	Strings

	Introduction to Data Structures

	Manipulation of Data Structures
	Scalar Variables
	Assignment
	Nomenclature
	Variable Substitution
	substr() --- Extraction of Substrings
	length() --- Length of String

	Lists and Arrays
	Creating an Array
	Adding Elements
	Getting the number of Elements in an Array
	Accessing Elements in an Array
	Removing Elements
	splice(): the Versatile Function
	Miscellaneous List-Related Functions
	Check for Existence of Elements in an Array (Avoid!)

	Hashes
	Assignment
	Accessing elements in the Hash
	Removing Elements from a Hash
	Searching for an Element in a Hash

	Contexts
	Miscellaneous Issues with Lists

	Operators
	Introduction
	Description of some Operators
	Arithmetic Operators
	String Manipulation Operators
	Comparison Operators
	Equality Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Other Operators

	Operator Precedence and Associativity
	Constructing Your Own sort() Routine

	Conditionals, Loops & Subroutines
	Breaking Up Your Code
	Sourcing External Files with require()

	Scope and Code Blocks
	Introduction to Associations
	Code Blocks

	Subroutines
	Creating and Using A Subroutine
	Prototypes
	Recursion

	Packages
	Declaring a Package
	Package Variable Referencing
	Package Variables and Symbol Tables

	Lexical Binding and Dynamic Binding
	Conditionals
	Loops
	for loop
	while loop
	foreach loop
	Loop Control Statements

	References
	Introduction
	References Primer
	Creating a Reference
	Using References
	Pass By Reference

	How Everything Fits Together
	Typeglobs

	Object-Oriented Programming
	Introduction
	Object-Oriented Concepts
	Programming Paradigms
	Basic Ideas
	Fundamental Elements of Object-Oriented Programming

	OOP Primer: Statistics
	Creating and Using A Perl Class
	How A Class Is Instantiated

	Inheritance
	Another Example: Traffic Light Simulation

	Files and Filehandles
	Introduction
	Filehandles
	open a File
	Output Redirection

	File Input and Output Functions
	readline() --- Reads A Line from Filehandle
	binmode() --- Binary Mode Declaration
	read() --- Reads A Specified Number of Characters from Filehandle
	print()/printf() --- Output To A FileHandle
	seek() --- Sets File Pointer Position
	tell() --- Returns File Pointer Position
	close() --- Close An opened File

	Directory Traversal Functions
	opendir() --- Opens A Directory
	readdir() --- Reads Directory Index
	Example: File Search

	File Test Operators
	File Locking

	Regular Expressions
	Introduction
	Building a Pattern
	Getting your Foot Wet
	Introduction to m// and the Binding Operator
	Metacharacters
	Quantifiers
	Character Classes
	Backtracking

	Regular Expression Operators
	m// --- Pattern Matching
	s/// --- Search and Replace
	tr/// --- Global Character Transliteration

	Putting It All Together

	CGI Programming
	Introduction
	Static Content and Dynamic Content
	The Hypertext Markup Language
	The World Wide Web

	What is CGI?
	Your First CGI Program
	GET vs. POST
	File Upload
	Important Environment Variables
	CGI Environment Variables

	Server Side Includes
	Security Issues
	Why Should I Care?
	Some Forms of Attack Explained
	Safe CGI Scripting Guidelines

	Questions

	Administration
	CPAN
	Accessing the Module Database on the Web
	Package Managers
	Installing Modules using CPAN.pm
	Installing Modules --- The Traditional Way

	Setting Up A Web Server
	Apache
	Microsoft Windows
	Unix

	A Unix Primer
	Introduction
	Why Should I Care About Unix?
	What Is Unix?
	The Overall Structure

	Filesystems and Processes
	Overview
	Symbolic Links and Hard Links
	Permission and Ownership
	Processes
	The Special Permission Bits

	BNF Grammar of Selected Functions
	sprintf()/printf()

